
1

Indoor Way-finding Using Bluetooth Low Energy
Beacons

Group 7
Arman Pouraghily, Fubao Wu

F

Abstract—With the new advancement in technologies and with perva-
sive use of smart phones, we are observing a new paradigm of way
finding and navigation. Most of the new smart phones has the ability
to receive the GPS signals and use them for localization. GPS based
localization and navigation is simply replacing the old fashion map based
navigation which was used for long time. The only problem with this new
approach is that it can not be used inside the buildings. In this work,
we implemented a localization and wayfinding application in in Java for
android based smart phones and tablets which is used for navigation
inside the buildings. The localization is based on the data collected from
some bluetooth low energy tags which are well placed in the first floor
of Marcus building. The system catches the signals coming from all
the beacons in its range and estimates the distance to each of them.
Using the distance from the three nearest tags we could find our location
related to the location of those tags and by knowing the absolute location
of those tags we could find our location. After finding our location, we
could use a simple navigation algorithm for navigate through the building
to any desirable location.

Index Terms—Bluetooth Low Energy, Indoor Way-finding, Longitude,
Latitude, Circle Intersection

1 INTRODUCTION

As said before, most of the new smart phones have
the ability to receive the GPS signals and use them for
localization. GSM based localization and navigation is
useful when you are outdoor and you can see the sky
over your head but not inside the buildings. Navigation
inside the buildings maybe seems unnecessary at the
first sight because inside the buildings, you could simply
find your way by using appropriate signs. But you can
do so, if you have an acceptable vision but what about
the people with visual impairment. In this work we are
focusing on those people. We have developed an applica-
tion which make use of bluetooth low energy tags to find
our location and try to navigate through the building to
any desirable location using voice commands.

In order to implement any kind of localization algo-
rithm, we need to know the absolute location of some
points as the basis of localization process, in this project
we have known the exact location of the deployed
beacons in terms of latitude and longitude. So in order to
find our exact location, first we need to find our location
relative to the location of those tags and then using a
simple procedure, map our relate relative location to the
absolute location.

2 PHASE I
In this section, we describe the application and algorithm
used for indoor localization which has been done in
phase one.

2.1 Implementation details
At the first step, we should filter the student tags out by
the major ID. We have stored the details of the 17 tags
used in Marcus building. When we received a signal,
we just check for its major ID to see if it matches with
one of those 17 values. If yes, we go to the processing
step and if not, we simply ignore it. Since the signal
values are not stable enough, we use averaging to make
them more stable. We have implemented 17 queues for
these 17 tags (one queue per each tag) with depth of
4 (the number of samples used for averaging). Once
we receive a new signal value from a tag, we put that
value in the appropriate queue and if we receive no
signal from a tag, it means that we are not in the range
of that tag, so we put -100 in that tag’s queue. At each
round, we calculate the average of the samples stored
in the queues and sort them to find the closest tags.
After sorting the tags based on their average signal
values, we should pick the three strongest ones. In the
next step, we need to calculate the distance to those
tags. The distance to each tag can be calculated using
the following formula:

Distance (feet) = -0.00903 * RSSI2 - 2.171 * RSSI - 94

After finding three closest ones, we try to find our lo-
cation relative to their location. For this purpose, we pick
the two stronger ones and draw two circles with centers
on those two tags and radius equal to the corresponding
distances to them. By intersecting those circles, we could
have one or two points (one point is very unlikely
but possible) or even no intersection. If there is no
intersection, we draw an imaginary line between those
two tags and we will find a point between those two
points with the distance proportional two the distance
from those two points. In case of 1 intersection point,
that point would definitely be our answer and in case of
two intersecting points, each of those two points could



2

Fig. 1: Two circles with centers on x axis

be our probable location. In this case, we use the distance
to the third nearest tag. We draw another circle with
center on the third tag’s position and the radius equal
to the distance to that tag. If this new circle intersects
with those two circles, we would have a common region
between all those circles and our location would be
estimated by the center of that common region. But if
the third circle doesn’t have intersection with both of
those circles, we would select one of those two points
which is closer to the third tag.

In order to draw those circles and intersect them, first
we need to know the location of those tags. In order
to do so, we have implemented a look up table with
the location of each tags but in geographical coordinate
system. Each location could be obtained by the minor
code of each tag. First of all, we look up the location
of each tag by looking up its minor code. The next
step is to build a new coordinate plate for the selected
tags and also its needed to find their distance in meters
(since the distance obtained from BLE signals is in feet
and converted to meter). Using a simple transformation,
we could find the x and y displacement of the points
relatively to each other. We also use the left one as the
origin of this new plate. After that, we have the x and y
of each point and our distance to each of them, we could
draw those mentioned circles and intersect them.

If we have two circles with center of them on the (0,0)
and the center of the other one also on (d,0), we could
find their intersection as follows:

As it can be seen in Fig 1, we drew two circles with
centers of (0,0) and (d,0) and the radius of R1 and R2
respectively. The goal is to find x and y of those two
intersection points. According to [1], we could find the
location of those points using these the formula shown
in Fig 2. But we should note that this formula will work
only when both the center points of those circles are on
the x axis.

Fig. 2: Formulas to find the intersection of two circles

Fig. 3: Localization result between tag #1 and tag #2

In order to use that formula, we should use a transfer
function and also a rotation function. After applying
one transfer and one rotation, we could have the x-y of
those points. After calculating the x-y of the intersection
points, we should bring them back to the plate they
actually were which means we should use a rotation first
and a transfer after that.



3

2.2 Application Details

In the tagSeachingActitiy, it will enter the search of
tags screen, at least three tags should be detected for
navigation.

In ShowGoogleMapActivity file,
1: Search all the tags that can search in a subthread.
2.Transfer the signal to distance use the signal to
distance model formula. 3. Store the hashmap of the
key and distance value of corresponding searched tags,
the distance is stored used a queue.
4. when there is 12 sample in the queue, we calculate
the average distance of sample to 12 to the average
distance. When there are more than 12 samples, we will
remove the head the queue ,enter the new sample into
the queue.
5. then we setup a hashmap for the key and average
distance.
6. if the tags numbers are equal or bigger than 3, then
we use the searched tags to sort the hashmap above.
7.then we use localization method in the UI thread!5:
After localization, we continue the step 1 again.
The localization method shown in the report!

Localization uses three circles/two circles intersec-
tions.

First, if the first nearest and second nearest tags has
no intersection, We will use the center of the edge of two
circles along the line on the center of circles!

Second, If the first and two intersection has inter-
section, and the third circle has no intersection, we
will use two intersection points p1 and p2 of the two
nearest circles. The third circle center point is C3, We
will calculate the distance P1-C3, between p1 and C3,
and the distance P2-C3 between P2 and C3. If P1-C3 is
smaller than P2-C3, we will use p1, Otherwise, we will
use p2.

Third, if first three circles have intersection, we will
use three circles intersection, Get the three points of their
common intersection. I will make up a triangle, Then use
the center point of the triangle to use the location!

2.3 Testing Scenarios

We tested whether we obtained the three nearest points
correctly and observed location point in different scenar-
ios:

1) When we hold the tablet in one place still, the
location is almost accurate and the error distance is about
1-2 meters. As can be seen in Fig. 1, we are standing
between tags 1 and 2 and the location is estimated pretty
accurately.

2) When we move directly from the tag 1 to tag 15
location or the opposite direction, it approximately show
the location of phones, but the error is becoming bigger.
It also depends on the speed of phones movement.
the much slower we move, more accurate the location
estimated. But there are some jitters and instability, it

also depends on the receiving signal strengthen. Some-
times, we find the remote tags signal is strong, and thus
could affect the accuracy and cause the error value of
localization. We write down the geographic location of
every times calculation into the SD Card text file and
find the altitude and longitude moving with the right
direction.

3 PHASE II
In the second phase, we added the navigation capability
to the localization application we developed in the first
phase. In this section we will describe the details of this
application and its implementation.

3.1 Implementation Details
In order to add the navigation capability to our ap-
plication, we divided the area into three sub areas:
Main corridor, Doorway #1, and Doorway #2. In each of
these sub areas, there are two different possible moving
directions. In the doorways, the directions are to west and
to east and in the main corridor, we have to north and
to south. When we start the navigation, we first check
the current position and also the destination position
with the sub areas boundaries to see in which sub area
they are located. If they are both located in the main
corridor, we just compare the latitudes. If the destination
latitude is bigger than the source one, the direction
is to north otherwise it should be to south. The same
comparison holds true but with respect to the longitude
in the current location and the destination are both in
one of those doorways. If the current location and the
destination are not in the same sub area, we will do a
multi-step navigation. We defined two junction points
at the junction of each doorway and the main corridor.
When we want to change the sub area, we should first go
to one these junction point (depends on which of the sub
areas we are) and then change the sub area. For example
if we are in the main corridor and the destination is in
the lower doorway, we should first go to the junction of
the lower doorway and the main corridor and then go
in the doorway until we get to the destination.

Another aspect of our navigation system is to find
the right direction. We calculated the angle between
the north direction and the corridor and also the angle
between north direction and the doorways off-line and
stored the values in a table. During navigation, using the
internal gyroscope of the tablet/cellphone, we roughly
calculate the orientation of the device and using some
voice commands, try to compensate the orientation and
bring the user in the orientation of the route.

3.2 Application Details
In order to do the navigation, the user should tap and
hold on the desirable destination and after that, press
the Navigate button on the top left corner of the screen.
After pressing that button, the navigation procedure start



4

Fig. 4: Route from the main corridor to the upper door-
way

which details are as follows: At the first step, we form
a simple graph in ShortestPath.java. This simple graph,
initially consists of two nodes which are located at the
junctions of the doorways and the main corridor. After
that, we should add the destination and our location to
this basic graph before starting the navigation procedure.
After adding these two nodes, we ready to find the best
route. The best route is calculated by use of Dijkstra
algorithm [2]. After finding the best route, it’s time for
navigation. For navigation purpose, we firstly, need to
find the correct direction of the device. In order to find
the direction of the device. To find the direction, we used
the internal gyroscope of the device. Using the function
onSensorChanged(SensorEvent evnt), we find out the angle
between the device direction and north. If there is any
deviation from the angle calculated and the right angle
to the next hop, we use a voice command to correct
the direction and if there is no considerable deviation
(i.e. the deviation is less than 45 degrees) we use the
voice command of go straight for x meter where x is the
distance to the next hop. Upon arriving at the next hop
or updating the location for 5 times, we again calculate
the angle deviation and say it. The reason behind that

Fig. 5: Route from the lower doorway to the main
corridor

we don’t say the correction angle is that, we don’t want
the device to speak continuously and we assume that
the user will walk in a straight fashion.

3.3 Testing Scenarios

In order to test the navigation system, we came up
with different scenarios. As said before, we divide the
whole area into three sub areas. In these scenarios, we
made sure that the routing is working between any pairs
of source and destination within different sub areas.
Some routing examples can be found in figure 4 through
figure 6. In Fig. 4 we could see the route from the main
corridor to the upper doorway. In Fig. 5, the current
position is in the lower doorway while the destination is
in the main corridor and finally, in Fig. 6 we could see
the route from lower doorway to the upper doorway.
As said befor, in this case we should first come to the
junction of lower doorway and the main corridor, after
that go to the junction of the main corridor and the
upper doorway and finally find the destination within
the upper doorway.



5

Fig. 6: Route from the lower doorway to the upper
doorway

4 POSSIBLE IMPROVEMENTS AND EXTEN-
SIONS

In this section we briefly talk about some weaknesses in
our application which could be addressed in future to
improve the functionality of the application or improve
its accuracy.

1) The data read from the gyroscope doesn’t seem
to be that much accurate. Maybe we could find some
calibration or compensation method to make the data
more reliable.

2) The interface used in the application is not suitable
for the people with visual impairment but since, we used
an modular architecture in the design of our application,
a new interface can be simply plugged to the application
and be used.

3) In most cases, we have good signal strength from
at least three different tags which is sufficient for our
localization algorithm but in very rare case in which we
have only two tags in rage, the localization seems to be a
little inaccurate which could be improved by employing
a new localization algorithm in that special cases.

4) In this very first version of our application, we
didn’t limit the destination to be within the boundaries

of our area which may cause our application to misbe-
have in some cases where the destination is set outside
the area. It doesn’t seem to need very much works and
could be done easily.

5 APPENDIX I
We have discussed the phase1 together and how to
design generally.
Fubao Wu’s main contribution:
Fubao Wu Designed and implemented the phase 1 code
and did debugging

Designed and implemented all the codes of phase2
and did debugging and some tests!

Added the detail of application to the final report.
Fubao Wu wrote the seperate program design file and

the setup program file.
Arman Pouraghily’s main contribution:
Arman Pouraghily did some test of phase1 and write

the report of phase1
Arman Pouraghily did some tests of phase2 and write

the report of phase2 generally

REFERENCES
[1] MathWorld. Circleintersection. [Online]. Available: http://

mathworld.wolfram.com/Circle-CircleIntersection.html
[2] Wikipedia.org. Dijkstra. [Online]. Available: http://en.wikipedia.

org/wiki/Dijkstra’s algorithm


