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Abstract

Recommending outfits for consumers offers the great convenience to their clothing and shopping for fashion items.
There are several tasks involved outfit recommendation–missing prediction for compatibility, style extraction and
outfit generation for recommendation. Most of current approaches of outfit generation for recommendation focus on
style of pair-wise fashion items in an outfit rather than a global style of all outfits. Focusing on global styles of outfits
offers more effective and accurate information for outfit recommendation. We propose to explore adversarial auto
encoder to extract the global styles from outfits, an unsupervised method to fast learn the global information of outfits.
Using the global style information learned into a model, it can effectively generate outfits flexibly and explanatively.
We will be doing extensive experiments on a human-generated outfit dataset for the proposed model and test the
performances compared with the state-of-the-art methods.
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1. Introduction

Purchasing clothes for compatibility and choosing
fashion items play an important role for consumers’
lives. The good combinations of fashion item selec-
tion require expert knowledge. With the development
of artificial intelligence, the recommendation of fash-
ion items for compatibility becomes necessary and has
great improvement on consumers’ lives. Recommend-
ing outfits to users involves two types of questions. The
first type question is that given an outfit missing a fash-
ion item(e.g. T-shirt, pant, a bag or sunglasses), we find
the best missing item (e.g shoes here) to comprise an
outfit to recommend to users. The second type is that
given a fashion item(e.g. a green dress), we generate an
outfit that has the similar style and compatible with the
given item and then recommend to users. We are focus-
ing on the second type of question of recommendation.
To achieve the recommendation, there are three main
tasks involved. (1)learn some outfit compatibility based
on outfit images and descriptions (if available). (2)ex-
tract the style of a given fashion item (3)find the outfit
that has the similar style with a given fashion item, then
recommend it to users.

Learning compatibility is the key for outfit recom-
mendation. An outfit compatibility has assumed to have
two properties: (1) items should have visual compatibil-
ity or share similar styles. (2) There are existing exten-
sive research on outfit compatibility. Most of them use

distance metrics to measure the pair-wise fashion items
in an outfit through metric learning [1] or a Siamese net-
work [2].

There are few efforts on learning the styles of out-
fits. They basically explored the style considering the
pairwise items in an outfit. In our work, we learn the
compatibility and extract the global styles for outfit rec-
ommendation. For the compatibility part, we use a bidi-
rectional LSTM model to learn the sequence of outfits,
and propose to use the state-of-the-art generative adver-
sarial encoder to extract the global styles from outfits.
Finally, given a fashion item, we can recommend sev-
eral outfits of different styles to users.

The main contribution of this project is: (1) We pro-
pose a framework to learn the outfit recommendation
based on multiple modules of neural networks. (2) We
propose to do outfit recommendation by extracting the
global styles in outfits given a query of fashion item us-
ing a generative adversarial autoencoder combined with
compatibility modules. (3) We have done extensive ex-
periments and show the result of effectiveness of outfit
recommendation in the Polyvore fashion dataset.

2. Related Work

There are extensive studies on automatic fashion
analysis including clothing parsing, clothing recogni-
tion and retrieval in the community. About the fashion
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recommendation and outfit generation, few work [3, 4]
explored fashion recommendation.

2.1. Outfit Compatibility

Learning outfit compatibility plays an important role
in fashion recommendation. Some initiative work tried
to use metric learning [1] to learn the compatibility be-
tween a pair of items. However, they neither considered
the composition of items to form an outfit nor supported
the global styles of an outfit. Another work related to
outfit compatibility was to use convolutional neural net-
work to learn the relation between fashion image fea-
tures [1]. Recent work that uses biLSTM to learn outfit
compatibility shows good results [5]. We will refer to
the method for our outfit compatibility learning.

2.2. Style Extraction

Fashion style extraction of outfits is the second im-
portant problem for providing great recommendation
experience for consumers. There exists some work
on the extraction of fashion style based on supervised
learning. Takagi et al. [6] proposed methods to learn
fashion styles by training a neural network using 14
modern styles collected from images. Although the
supervised method may be reliable, it is expensive to
prepare accurate labels without expert knowledge. Re-
cently, Tkuma et al. [7] tried to use unsupervised meth-
ods to extract the style, but they used a simple encoder
and decoder method to learn. Our work will focus on
extracting the global style with state-of-the-art adver-
sarial autoencoders.

3. Methodology

In this section, we describe methods for generating
outfits. An outfit can be represented as a sequence
of items, F = {x1, x2, ..., xn}, where xi is a fashion
item that could be any wearable clothes or accessories.
Referring to [5], we decide to use bidirectional long-
short term memory (BiLSTM), visual-semantic embed-
ding (VSE), and style embedding (SE) with adversarial
autoencoder (AAE). The architecture of the proposed
model is shown in Figure 1.

Figure 1: The architecture of the proposed model

3.1. Bidirecitonal Long-Short Term Memory
One property of LSTM is that the model can learn

the features of time steps. This is really useful for in-
puts that have some connections between each element.
For the items in an outfit, there is some relationship be-
tween items as well. Therefore, in order to let the model
to learn the features of sequence, we use LSTM for im-
plementation. However, if we only apply LSTM for one
direction, the model may miss some features from the
other direction. To solve this drawback, BiLSTM can
be applied.

For the BiLSTM, we implement forward and back-
ward LSTM. At each iteration, the BiLSTM model will
concatenate the current hidden states from forward and
backward LSTM. And since BiLSTM is a joint model,
the prediction can be represented as the below equation:

P(xt |x1, ..., xt−1, xt+1, ..., xn) =P f orward(xt |x1, ..., xt−1)
× Pbackward(xt |xn, ..., xt+1)

(1)

As the representation we described above, the input
is an outfit that can be F = {x1, x2, ..., xn}, each element
is an image of the item. During the training, before go-
ing to the LSTM model, each image will go through a
CNN to get the features. In the part of LSTM, the time
step will be the sequence of items. At each iteration,
the LSTM will take the previous hidden state ht−1 and
the input xt as the current input to calculate the current

2



hidden state ht. The following equations are the process
that the LSTM computes the current hidden state ht:

it = σ(Wxixt + Whiht−1 + bi)
ft = σ(Wx f xt + Wh f ht−1 + b f )
gt = tanh(Wxgxt + Whght−1 + bg)
ot = σ(Wxoxt + Whoht−1 + bo)
ct = ftct−1 + itgt

ht = ottanh(ct) (2)

where it, ft, gt, ot and ct represent input gate, forget gate,
cell gate, output gate, current cell state, and current hid-
den state respectively. And Wαβ represents the weight
that vector α maps to vector β.

After the current hidden state ht is obtained, the next
item can be predicted by using softmax function:

P f orward(xt |x1, ..., xt−1) =
eht−1 xt∑
x∈S eht−1 x (3)

where S is a set of possible items that can be fit in the
outfit. Then the loss function of the outfit F will be:

L f orwrd(F) = −
1
n

n∑
t=1

P f orward(xt |x1, ..., xt−1) (4)

Similarly, the prediction after using softmax function
and the loss function can be represented as following
equations:

Pbackward(xt |xn, ..., xt+1) =
eht+1 xt∑
x∈S eht+1 x

Lbackward(F) = −
1
n

0∑
t=n−1

Pbackward(xt |xn, ..., xt+1)

(5)

3.2. Visual-Semantic Embedding

A fashion item usually has a description about its
characteristics and attributes. Given an image of a fash-
ion item and its corresponding description, we can uti-
lize Visual-Semantic Embedding (VSE) method to ex-
tract a common expression between them. The de-
scription of a fashion item can be denoted as S =

{w1,w2, ...,wM}, where wi represents a word in the de-
scription. Mapping a description to an common embed-
ding space can be described as:

v =
1
M

M∑
t=1

WT · ei

where ei is a one-hot vector corresponding to wi. WT

represents a word embedding matrix. Similarly, a map-
ping of image features to an common embedding space
can be expressed as:

u = WI · x

where WI denotes the image embedding matrix. The
goal is to make sure that v and u are mapped near to each
other if they are derived from the same item. Other-
wise, it is preferable having no mapping between them.
Let U represents the set of word-embedded vectors and
U \ u(v) be the set of u excluding vectors corresponding
to v. That is, U \u(v) are samples different from v. V and
V \ v(u) have the same definition as U and U \ u(v) re-
spectively. The relationship can be expressed as below:

LVS E =
∑
u∈U

∑
v′∈V\v(u)

max(0,ms − d(u, v) + d(u, v′))

+
∑
v∈V

∑
u′∈U\u(v)

max(0,ms − d(v, u) + d(v, u′))
(6)

where ms is the margin of hinge function and d(u, v)
denotes the cosine distance between u and v.

3.3. Style Embedding with Adversarial Autoencoder
(AAE)

To extract the global style of outfits, here we pro-
pose to use an unsupervised method–the state-of-the-art
generative adversarial autoencoder [8] . We will briefly
discuss the model and how we use it in the outfit style
extraction. Adversarial autoencoder (AAE) is a proba-
bilistic autoencoder that uses generative adversarial net-
works (GAN) [9] to perform variational inference. The
reason we use the adversarial autoencoder is that it is an
unsupervised method (although it can use labels as a su-
pervised adversarial auto-encoder) that can capture the
rich distributions of images, and is shown to have better
results on disentangling styles of images compared to
variational autoencoder [10] and importance weighted
autoencoder [11]. The outfit is a sequence of image fea-
tures, we use AAE to learn the style features without
any labeling information. Before we learn the features,
we represent an outfit as a sequence of individual items
xt. Because the lengths of different outfit xt vary, we use
a reducing method to represent the style of an outfit as
follows:

xs =
1
N

N∑
t

Ws ∗ xt (7)

Here xs represents the style vector of an outfit. Ws
represents a weight matrix that maps an image feature
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to a feature vector. The feature vector xs is the input
of an adversarial auto-encoder, then we use it to learn
the basis style representation of a variety of outfits. Ac-
cording to the adversarial auto-encoderwe use the loss
function:

LAAE = Ex[Eq(z|x)[−logp(x|z)]] + Ex[La] (8)

Where q(z|x) is the encoding distribution for compress-
ing the style vector. p(x|z) is the decoding distribution
for reconstruction of the style vector. The adversarial
loss La is obtained by adversarial training procedure that
encourages the distribution q(z) of the latent code z to
match to the whole distribution of p(z) of positive sam-
ples. The reconstructed feature from original sequence
xs is denoted as x′s.

3.4. Objective Function
Since this is a joint model [7], the total loss should be

the loss from biLSTM, VSE, and AAE, the following
equation represents the objective function that we have
to minimize:

minθ
∑

F

(L f orward + Lbackward) + LVS E + LAAE (9)

where θ contains a set of parameter for biLSTM, VSE,
and AAE.

4. Experimental Evaluation

4.1. Dataset
There are many fashion websites which enable users

to define their own preferred outfits. In this experiment,
we use Polyvore (www.polyvore.com), which is one of
popular fashion websites. All outfits in this website has
been arranged by [5]. This dataset contains 164,837
items of clothing grouped in 21,889 outfits. We use 70%
of the outfits as training dataset, 20% of them is taken
to be as a validation set. 10% of them is used as the test
dataset.

4.2. Implementation
We implement our experiment with Pytorch and train

on the Google cloud platform with one GPU and 8
CPUs configuration.

4.2.1. Bidirectional LSTM(biLSTM)
In the initial step, we use GoogleNet Inception V3

model [12] to encode each fashion item as a 2048-
dimensional feature vector. The dimension of the vector
is reduced to 512 with the fully connected layer in the
last layer of Inception V3 so that it can be fed into biL-
STM.

4.2.2. Visual-semantic Embedding(VSE)
For visual-semantic embedding, we encode the vi-

sual description and attributes of available fashion items
into a feature vector, The dimension of the joint embed-
ding space is set to 512. Thus, we have WI ∈ R2048∗512

andWT ∈ R2757∗512, where 2757 is the size of the vocab-
ulary. We fix the margin m = 0.2 in Equation 6.

4.2.3. Adversarial AutoEncoder (AAE)
In AAE, we take the feature vector sequence of an

outfit as input and encode it to learn the style of the out-
fit, the learning rate for both encoder and decoder is set
to 0.0001.

4.2.4. Joint Training
The loss functions of biLSTM, VSE and AAE are

combined together for training jointly. The training
learning rate is set to 0.2 initially, then it decays by a
factor of 2 for every 2 epochs of biLSTM and VSE. The
batch size is set to 10, meaning that each mini batch
contains 10 outfit sequences, which has about 65 im-
ages and their corresponding descriptions.

Table 1: Parameter Dimensions

Module Parameter and Variable Dimension
BiLSTM xt R512

ht R512

VSE WT R2757∗512

WI R2048∗512

AAE Ws R2048∗256

Wt R1024∗8

The Parameter and variable dimension of all modules
provided in the formula are shown in the Table 1. Wt is
the weight used for the Generative Network in AAE.

The training loss functions of our model are shown in
Figure 2. It shows that the three modules of our model
converge after 50,000 iterations, even though they are
trained for more than 70,000 iterations.

Figure 2: The converged training loss of our model
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4.3. Baseline methods

We train our models with two different combinations
of modules. There are the following modules we con-
sidered here:

• BiLSTM+VSE. The models as the baseline model
with the bidirectional LSTM and the visual-
semantic embedding only

• BiLSTM+VSE+AAE. Our full model by jointly
learning the bidirectional LSTM, the visual-
semantic embedding and the style with AAE.

4.4. Missing Prediction

Here we consider the first task to predict the miss-
ing item from outfit. This is an important step to learn
the clothing sequences as an outfit. Given a sequence
of clothing images and a blank, fill in the blank with a
suitable clothing image for prediction. This evaluates a
compatibility recognition performance between an item
sequence and an item alone. The number of candidate
items is set to equation10 in our experiment, and then
negative fashion items are sampled from outfits exclud-
ing the query outfit.

Therefore, we need to consider the measurement
score of compatibility. Before we define the compati-
bility score, we consider the style similarity inside the
compatibility.

We assume the style of each fashion item in an outfit
is similar, according to the extracted style from AAE,
we define the style similarity as follow:

S S (Fs1, Fs2) = cosS im(xs1, xs2) (10)

We use the cosine similarity (cosSim) of the extracted
style vector similarity x to measure it.

Then we evaluate the compatibility as follows:

xa = argmax
x∈C

exp(ht−1xc)
Σx∈Cexp(ht−1x)

+
exp(h̃t+1xc)

Σx∈Cexp(h̃t+1x)
+γS S (F, xc)

(11)

where the first and second terms on the right side are
the scores calculated by the forward LSTM and back-
ward LSTM, respectively. C represents the set of can-
didate items. F here represents an input sequence with
an item removed and γ is a hyperparameter that repre-
sents a weight of style similarity. Here we use γ = 0.2
according to the best experimental value.

Because we want to predict the outfit compatibil-
ity, we design a quantitative measurement of the com-
patibility to evaluate how good the compatibility is.

Through this step, we can avoid the the outfit that has
similar type of items appeared multiple times.

Therefore, we can compare the test accuracy of the
different models for predicting the missing item and
compatiblity AUC in the blank.

Table 2: The comparsion of our model on missing prediction and com-
patibity accuracy

Models Missing prediction accuracy
Compatibility AUC
BiLSTM+VSE 39.6
0.69
BiLSTM+VSE+AAE 32.5
0.61

We have used this one dataset to test and find with
AAE, it has lower accuracies compared with the base-
line model. It is probably this dataset trained is kind of
overfitting for our model when training with too many
extra iterations done in our experiment. It also does
not help with the missing item with the global style
when predicting missing items. It needs to be confirmed
with more datasets and to be further analyzed for future
work.

Here we show some successful missing prediction ex-
amples in Figure 3a and 3b. The green circle is the one
that has the highest score which is predicted to be the
best fit. It shows the missing prediction has successfully
recommend the missing item the completed an outfit,
which has the high score.
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(a) Success case 1 of Missing prediction

(b) Success case 2 of Missing prediction

Figure 3: Successful cases for missing prediction

However, we also have found some bad cases that the
missing prediction does not perform well. It also could
detect the duplicated items shown in Figure 4a and 4b.
It outputs the unsuitable recommendation which will
therefore need to use compatibility test to further evalu-
ate whether the outfit is compatible.

(a) Failure 1 of Missing prediction

(b) Failure case 2 of Missing prediction

Figure 4: Failed cases for missing prediction

4.5. Style Extraction

We have assumed the outfit can be represented as
mixture of elements of a style basis. Here we define the
four basic types of style basis used in this experiment:

Style 1 represents the spring or early summer in pale
tone. The main items are skirt or simply designed fash-
ion items.

Style 2 associates with summer, which is dominated
by sandals and jeans, which has high contrast with the
color of style 1.

Style 3 reminds you of the strength and individuality
with lots of dark and black items, many of which are
made with leather and metal.

Style 4 is related with winter outfit with made thick
fabrics, and also some have high-heel boots and gold
accessories.

Here we show some outfit examples of each style in
the following figures.

(a) Style 1

(b) Style 2

(c) Style 3

(d) Style 4

Figure 5: Examples of items for different style basis

All the other outfits generated are based on the mix-
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ture of the style basis.

4.6. Outfit Generation

After we get the outfit sequence from biLSTM and
the global style from AAE, we define a score function
to evaluate the likelihood of the sequence and the global
style as shown in Equation (12):

score(F|starget) = − (E f (F; θLS T M f )
+ Eb(F; θLS T Mb)) + β ∗ cosS im(xs, starget)

(12)

where xs represents the style of the query sequence
computed from AAE, and x′s represents the recon-
structed style of the query sequence learned from AAE.
The similarity of the style of generated sequence with
the target style is calculated in Cosine Similarity. β is a
hyperparameter used to control the balance between the
sequence likelihood and the style similarity.

Thus for each outfit sequence generated from biL-
STM, we can get the outfit style score based on the
target style and the generated style. Thus we can rec-
ommend the best outfit based on the target styles using
a search algorithm. Here we use beam search [13] to
speedup the search in our experiment.

We show some examples of (good and bad) outfit
generation in the following Figure 6. It shows we can
successfully recommend some outfits even with some
bad recommendations with duplicated style of items in
an outfit existed. Although we use the compatibility
evaluation to further evaluate the compatibility score
and recommend the outfit with the highest score, it is
still not enough to truly filter some bad recommenda-
tion. This could may lead to the future work to explore
the true reason.

Figure 6: Good (a, b, c) and bad cases (d) for outfit generation. For
the bad case, the result may have duplicated items. Green square rep-
resents the given item.

5. Conclusion

In this paper, we have researched the outfit recom-
mendation for fashion. We focus on trying to get the
global style from the whole outfit with the new Adver-
sarial AutoEncoder combined with the biLSTM com-
patibility module together to generate outfits. We have
experimented in detail the outfit prediction and compat-
ibility test, and the style extraction test to get the outfit
generation. The experimental results show our model
with AAE is not very good compared with the baseline
model, though we can successfully recommend some
outfits. For the future work, we will investigate more
datasets and find out the real reasons behind why there
are some bad outfit generations and thus improve our
models.
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