
Programming Assignment 3: Internet of Things – Fault tolerance,
Replication, and Consistency

 Fubao Wu 28277607

Ashraf Ali Shaik 28211687

 Replication and fault tolerant Architecture
The Gateway is made fault tolerant by adding an replication of data base that can take
care of all the devices and sensors when failures occur. Gateway and its replication can
also share load between them by sharing the sensors and devices which they can co-
ordinate. A Cache is present between database and gateway to improve performance.

Drawing 1: Block Diagram

Temperature
Sensor

User
Process

Smart
Heater

Smart
Bulb

Door
Sensor

Presence
Sensor

Motion
Sensor

Back End
Database

Gate way

Front End

Back End

U
p

d
a

te
L

og
 w

ith
 e

ve
nts

R
e

sp
o

nd
 t

o
 Q

u
e

ry
 fo

r
st

a
te

Sensors and Devices push or pull events to Gateway.
Gateway populates Database with events

Responds to Events
 and Queries

Gate way
Replica

LRU
Cache

Cache lookup

Cache Miss

Load Balancing

 Load balancing is achieved by sharing the number of devices and sensors each gate way
and replica will handle. Initially all the sensors and devices will talk to the gateway. The
gateway takes control of first registered device/sensor and then assigns the control of
second registered device/sensor to Gateway replication. Third to gateway, fourth to
replication and so on. This ensures load is equally distributed. The devices/sensors are
registered at Gateway or Gateway Replication as shown in the figure.

Initially Devices/Sensors have Ip address and port details of only Gateway. But after
assigning some of them to replication. The Gateway replica will send its ip address and
port number to devices/sensors under its co ordination so that they can directly interact
with Replication.

Consistency (Eventual Consistency)
 Consistency is achieved by maintaining the state information of sensors and devices at
both Gateway and Gateway Replica. When ever a Sensor or device pull or push its state
to the gateway or replica we have updated the state in another by a non blocking thread.

Drawing 2: Load Balancing

Gateway Gateway
Replica

Gateway
Replica

Gateway
Replica

Motion
Sensor

Tempe
Sensor

Smart
Bulb

Smart
Heater
Smart
Heater

Door
Sensor

Data
base

Register
Register_motionSensor

Assign Rep

Tempe at
GW

Send_Rep IP,Port

Motion at Rep

Register

Door at GWRegister
Assign Rep

Send_Rep IP,Port
Bulb at Rep Register

Heater at GW
Register

Assign Rep Database at Rep

1

5

3

2

4

6

An example test case below explains how consistency is achieved in the design.

We have cache consistency and disk database consistency. When there is write update in
one gateway, it would write into the cache and immediately send to its gateway replica
to keep consistency. Every replica should be consistent to the last updated values.

For database replication, we have cache written, we would check database whether it is
needed to be update or not. If needed, we will write back to database. Write-write
conflict is not frequent. If there is mutliple sensors or devices write to different gateway
replicas, we will write into different cache using locks.. But we we do consistency,
receving message and write it into cache before check whether it is locked or not. Also
try to use database file locking or avoid writing database at the same time.

LRU Cache: Implemented a cache using Least Recently used policy to query the results from the
database tier. When a query for the state of a device is issued then we initially try to search in the cache.
If there is a cache hit we return the value from the cache. In case of a cache miss we get the value from
the database and update the database.

Drawing 3: Consistency Achievement

Temperature
Sensor

Gateway
Gateway
Replica

Report_temp=22 Temp=22Update_temp=22
Temp=22

Drawing 4: LRU Cache Implementation

Gateway
 (or)

Replica

LRU
Cache

Backend
DataBase

QueryState(DeviceID)

Cache Hit
Device_state

QueryState(DeviceID) Cache
Miss QueryState(DeviceID)

Update Cache by LRU

Device_state

Fault tolerance:

 To make the system operate continuously, the gateway is replicated. But if the
gateway is fault, how do we do the detection and recovery.We use event consistency to
keep consistent between gateway and its gateway replication called asGw_replica.We
will talk about how do we detect the replica. We send the heart message between two
replicas.
 Gateway A push heartbeat message every time_interval(set as 3seconds), Gw_replica
A’ also sends a heartbeat message every other a time_inteval(set as 3 seconds as well).A
and A’s will also initialize a separate thread task to detect the pushed message from the
other side. The Time interval is also set 3 seconds here.But it will detect for the
maximum times(set as 3 here), it reaches 3 times continuously, it will judge the other
side is disconnected, we here simply think it is crashes!If one replica crashes, the other
would take over the functionality of crashed one.
 If Gw_replica is initially registered (connected) with motion sensor, bulb smart. After
Gw_replica crashes, these motion sensor and bulb would be notified by the
Gateway.Then all the sensors and devices would communicate with the gateway. After
the gateway replica recovers, the motion sensor and bulb smart would be notified again.
It will be notified again to connect to replica gateway replicas.

Explain the effect of fault:

 Because we use event-consistency which is weak consistency. It doesn’t fullfill the
stronger constraints. We can basically guarantee exchanging versions or updates of data
between gateway. If gateway has updated ,it will immediately send to gateway replica.
Or gateway replica has updates, it will also send to gateway to keep consistent
immediately.
 In our system there are not frequent writing. But if there are multiple sensors write to
gateway and gateway replica’s at the same time, one gateway replica’s value is likely to
be lost. The impact of such data loss in our system is not huge. Because if we find data
consistency is not consistent, we do query data from sensors to check which one is
consisten with the sensor and update the new value with the sensors!

Drawing 5: FaultTolerance operation Timing Diagram

Sensors&
Devices

Connected to
Gateway
Replica

Sensors&
Devices

Connected to
Gateway

Gateway
Gateway
Replica

Communicate Communicate

Heart Beats

Heart Beats

BroadCast

HeartBeat_every 3s

Replica
crashes
Communicate
with Gateway

Communicate

BroadCast

Communicate

Gateway
crashes
Communicate
with Replica

Paxos Design: Paxos Design can be implemented as shown in the timing diagram.

Paxos : Paxos Algorithm is for reaching an agreement can be implemented as shown in the timing
diagram.

Drawing 6: Paxos Design

Device_temp GW_REP1GW_REP4 GW_REP3 GW_REP2

Request Temperature to all gateway Replicas

Any Replica can run Paxos Assume Rep 4 ran first
Prepare, Rep4: 1

Prepare, Rep4: 1
Prepare, Rep4: 1

Ok, Temp: 32 degree

Ok, Temp: 32 degree
Ok, Temp: 32 degree

Accept, Rep4: 1, 32 degree
Accept, Rep4: 1, 32 degree

Accept, Rep4: 1, 32 degree

OK OKOK

Decide, 32 degree
Decide, 32 degree Decide, 32 degree

Proposer
(leader)

Acceptor AcceptorAcceptor

The Temperature is decided as 32 degrees

Response: Temp = 32Response: Temp = 32
Response: Temp = 32

Response: Temp = 32Keep first response and
Discard others

1

4

3

2

6

5

Paxos Design details

Assuming there are 4 replicas. As shown in above figure

Step 1: A Device queries for its state to gateway and all replicas.Take Temperature
sensor as example and we are querying for temperature.

Step 2: A leader or proposer will be selected randomly. Let the leader in this case be
Gateway replica4. It sends prepare message to all the other gateway replicas including
the election (agreement) number.

Step 3: If the election (agreement) number is greater than the election number present at
the acceptors then acceptors will send the temperature along with OK message.

Step 4:The Leader then find outs the value with majority and broadcasts all the intended
results to all other replicas.

Step 5: Acceptors acknowledge with an OK message it they have no concern with the
value selected by the proposer.

Step 6: Leader will send the Agreed value to all other replicas. Upon receiving the value
all the replicas can transmit the temperature value to the temperature sensor.

Temperature sensor can then only take the first temperature value and discard the next
duplicate responses. Temperature value sent by all replicas is redundant but it makes the
operation to be almost guaranteed even if one packet of data looses due to network
failure. The consecutive responses can be identified and discarded by caching the
received value at the sensor end and then matching the identical received packets and
making them eligible to discard.

Implementation Platform details:

→ Java

→ RMI

→ Linux Platform supported scripts.

Instructions for running the Code and Test scripts:

The code can be can using two different scripts:

1.run_LoadBalance_Consistency_Caches.sh --- This script is used to demonstrate the
implementation of loadBalance,Consistency and Querying for state of a device through Cache.

2.run-part_FT.sh --- This script is used to demonstrate our application is fault tolerant. Even if one
of the Gateway replicas crashes, the other one will take control.

We have decentralized our code into various Java Packages where each Package corresponds either to a
component (the gateway, a sensor or a device or Back end database). In order to avoid the complexity
and exceptions due to the supporting code being in different packages, In addition to the source code
we have also provided the executable jar files for each component above described. We have
Submitted Source code to verify code and Jar files to execute.

IP Address Recognition and Allocation:

We are needed to provide only the IP Address of the Gateway in the Configuration
file (configips.csv). The Default IP Address in configips.csv is local host. This IP
Address is needed for all the other components. Each Component can figure out
the value of its IP Address when initiated and will register at the Gateway.
Gateway stores the IP Address and can access the other components when
required.

Jar files & command line arguments in various cases:

For LoadBalance, Consistency, Caching (run_LoadBalance_Consistency_Caches.sh):

The following Jar files will take the command line argument as Path to the Configuration file . Please
place all the Jar files, configips.csv in the same Directory.

gnome-terminal -x sh -c "java -jar GatewayServer.jar configips.csv; bash"&
sleep 3
gnome-terminal -x sh -c "java -jar GatewayServerReplica.jar configips.csv; bash"&
sleep 3
gnome-terminal -x sh -c "java -jar motionSensor.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar tempeSensor.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar DoorSensor.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar HeaterSmart.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar bulbSmart.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar BackendDatabase.jar configips.csv; bash"&

For Fault Tolerance (run-part_FT.sh):The following Jar files will take the command line
arguments as Path to the Configuration file and “lab3_test”. “lab3_test” is used to distinguish between
the above mentioned LoadBalance mode and Fault tolerance mode. Please place all the Jar files,
configips.csv in the same Directory.

gnome-terminal -x sh -c "java -jar GatewayServer.jar configips.csv lab3_test; bash"&
sleep 3
gnome-terminal -x sh -c "java -jar GatewayServerReplica.jar configips.csv lab3_test;
bash"&
sleep 3
gnome-terminal -x sh -c "java -jar motionSensor.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar tempeSensor.jar configips.csv; bash"&

gnome-terminal -x sh -c "java -jar HeaterSmart.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar bulbSmart.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar DoorSensor.jar configips.csv; bash"&
gnome-terminal -x sh -c "java -jar BackendDatabase.jar configips.csv; bash"&

Executable Script files:

run_LoadBalance_Consistency_Caches.sh : This Script files corresponds to the automation of the
“For LoadBalance, Consistency, Caching” case discussed above. This script is executable and has all
permissions. User Just need to run this script and Terminals Pop up.

(i)Load Balance will occur automatically and The nodes which are assigned to Gateway Replica will
show which they are assigned . The Gateway and Gateway Replica terminal also displays the registered
nodes under them. See Appendix 1 screenshot of obtained results.

(ii)For consistency Testing User need to manually enter and report .For example take temperature
sensor and it is assigned to Gateway. Even if we report to Gateway the value will also be updated in
Gateway replica. User can see that value is updated in both replicas. User Input Needed. The few
starting output in terminal will convey the operation performed by that process. See Appendix 2
screenshots for obtained results.

(iii) For Cache testing User need to follow the instructions on the screen in Gateway terminal or
Gateway Replica terminal . On entering one of the Integer values of Device/Sensor Ids as mentioned
in the screen Querying takes place and Initially user will get a cache miss as this is the first entry and
we read from database. If user query using the same Device/Sensor Ids then a cache hit occurs and we
get data from cache. User Input Needed. The few starting output in terminal will convey the operation
performed by that process. See Appendix 3 screenshots for obtained results.

run-part_FT.sh : This Script files corresponds to the automation of the “For Fault Tolerance” case
discussed above. This script is executable and has all permissions. User Just need to run this script and
Terminals Pop up. See Appendix 4 screenshots for obtained results.

(i) As terminals pop up the Gateway and Gateway Replica will be sending Heart beats to each other.

(ii)Enter 1 in either Gateway or Gateway Replica to crash one of them. After that user will not see any
heartbeats.

(iii)Enter 0 in the previously crashed Gateway/Gateway Replica to recover the Gateway/Gateway
Replica. User will see heart beats being exchange again.

Performance Analysis:

We have performed experiments on the performance by measuring the delay from between Gateway
and the Sensors.

→ Push Performance delay test which Gateway Received push temperature from Motion sensor.

→ Pull Performance delay test which Gateway pull temperature from temperature sensor

Interval(average taken) 500ms 1000ms 2000ms 5000ms 10000ms

push(report) delay(ms) 3.454 2.898 3.572 3.452 3.126

pull(report) delay(ms) 4.224 3.554 4.232 4.522 4.134

Broadcast delay(ms) 3.756 2.967 3.421 3.653 2.983

Load balancing
additional avg delay(ms)

0.457 0.348 0.569 0.317 0.613

Time saved by
caching(ms) =
(Database AccessTime) -
(Cache Access Time)

2.568 3.185 2.157 2.893 3.027

→ From basic statistics of this table, the delay of push and pull are very small where as pull delay is a
more than push.

→ An overhead of time due to load balancing is observed while assigning nodes to replicas.

→ Caching have helped in reducing access time than accessing the external file every time.

 Possible improvements and extensions to your program

(1) the consistency is not very strict with eventual consistency. If there are frequent
multiple sensors write to same gateway and replica, there will be some lost, so we can
sequential consistency to improve it to be sequential consistency

(2) the fault tolerant is based on heartbeat. It is difficult to differentiate the long delay
and dead. We can improve to accumulate historical experience about the reponse time
and approximate estimation response time to decide whether it is long delay or really
dead.

Conclusion:

→ Application can run in two modes one for testing one mode tests the implementation
of load balancing, consistency and caching. Another for testing Fault tolerance.

→ Paxos conceptual design is illustrated.

→ Performance analysis of various cases were specified based on delay between various
communicating nodes.

→ We have extensively tested all the Test cases as mentioned above
to ensure the application is executing as expected.

 Appendix 1: Load Balance

Appendix 2: Consistency

Illustration 1: Load Balancing Executing screenshot

Illustration 2: Consistency Implementation screenshots

Appendix 3: Caching

Illustration 3: Caching Implementation Cache Miss and Cache Hit

Appendix 3: Fault Tolerance

Illustration 4: Gateway Failure Detection

Illustration 5: Gateway Replication Failure Detection

Illustration 6: Gateway Replication Recovery

Illustration 7: Heart Beat Messages

