
Programming Assignment 2: Internet of Things
Smarter Home Edition
 Fubao Wu 28277607

Ashraf Ali Shaik 28211687

Multi tiered Architecture:

The database is implemented in the back end tier and all the sensors and
gateway are assumed to be in front end tier. All the sensors and devices
either push events to gateway or pull events from sensors and devices.
Gate way is made to communicate with the database to populate the
database with all the push and pull events from sensors and devices at a
particular time stamp. Gateway can query the database and get the
current status of a device or sensor and can report the particular machine.
Database is Synchronized to avoid multiple threads accessing at same
time.

Figure 0 Multi tiered Architecture

Leader Selection Algorithm – Ring Algorithm:

Leader in this distributed system has to be selected to maintain time
synchronization. Ring algorithm is used to select the leader. Each node in
the system has information about its neighbors and can communicate
with them. We can select any machine and initiate the ring selection
algorithm. The initiator machine can start a token with its id
included and pass it to the next machine. The next machine
appends its id to the token and pass to its neighbor. When the
token passes through all the machines and come back to initiator of
election then the initiator can iterate through the token to find the
machine with highest id and broadcast the result to other machines.

Figure 0 Ring Algorithm implementation

Handling Machine failure Ring Algorithm:
If a Machine fails then the machine before the node failure performs the
leader election and broadcast the result.

Figure 0 Handling machine failure in Ring Algorithm

Time Server and clock synchronization (Berkley Algorithm):

The leader selected from the above-mentioned ring algorithm performs
the clock synchronization. Once the leader is selected then the leader will
act as a timeserver and requests the current time from the remaining
machines. Leader will then compute the average of the time received
from other machines and broadcast the average time to all the machines.
All machines then compute the offset variable based on the difference
between their current time and the time received from the master.

Figure 0 Time Server Implementation

Lamport's logic clock/vector clock algorithm

Clock syncronization can also be accomplished by logic clock, lamport clock which is useful
for event order. For some concurrent events, we don't care about the order.
We only care about the event that communicates with each other.
If event a happened before event b, then logic value LC(a) < LC(b).
we use lamport logic clock to infer the order of all sensors and devices's events with
gateways.

This basic lamport clock is implemented as Fig.5 which only shows four processes.
 door, motion, gateway and bulb's logic clock values changes . Others processes will have
similar rules.
1) initialize all the gateway, sensors and devices's LC as 0
2) then according to lamport's algorithm,
 Whenever an event occurs locally at i, LC i = LC i +1
 When i sends message to j, piggyback Lci
 When j receives message from i
 If LC j < LC i then LC j =max(LC i , LC j)+1

through this rule, we can get a series of event's value in gateway, for example
what is the LC value for motion is sensed, what is LC for door open sensed etc.
we record every event's clock value at gateway side termnial and log them including
logictimestamp, deviceId, devicetype for sending message, event, and device's current status
into the database file
the log format for logic clock in a different database file has the following format which is a
little different from the dabase format from physical clock synchronization

Event ordering

About event order, we can use physical clock synchronization
implemented in part1, as well as this, we can also use lamport logic clock
designe in part2.

Takes motion sensor and door sensor data to infer when someone entered or left
the house. For instance, if motion is sensed first and the door open event
happens later, it follows that someone has exited the home. Conversely, if the
door open event is seen first and motion is detected later, someone has entered
the house.
We used this to design a testcase called lab2-test-input.csv to
automatically inferred user came home and left home

Also, we use presence sensor to automatically randomly push event to
gateway, if gateway received presence “on”, we inferred its user's activity.
If gateway receive presence “off”, we inferred its intruder's activity.
The test case would be describer below.

Implementation Platform details

 Java
 RMI
 Linux Platform supported scripts.
Instructions for running the Code and Test scripts:

The code can be can using three different scripts:
1. run-part1.sh ----- To Manually enter data and test if Leader

election(Ring Algorithm), Time server and Database are working.
(Part 1 in Assignment)

2. run-part2.sh ----- To Manually enter data and test if Logical clock
implementation and Database are working. (Part 2 in Assignment)

3. run-test-case.sh ----- To run test cases provided in a “lab2-test-
input.csv”
to simulate event ordering and the above parts automatically. This

includes automatically simulating part1 and part2 manually tested
above.

We have decentralized our code into various Java Packages where each
Package corresponds either to a component (the gateway, a sensor or a
device or Back end database). In order to avoid the complexity and
exceptions due to the supporting code being in different packages, In
addition to the source code we have also provided the executable
jar files for each component above described. We have Submitted
Source code to verify code and Jar files to execute.

IP Address Recognition and Allocation:
We are needed to provide only the IP Address of the Gateway in the
Configuration file (configips.csv). The Default IP Address in configips.csv
is local host. This IP Address is needed for all the other components. Each
Component can figure out the value of its IP Address when initiated and
will register at the Gateway. Gateway stores the IP Address and can
access the other components when required.

Test-input file:
The Test-input file “lab2-test-input.csv” can be used to assign test
cases for the application when operated by running the automated scripts
instead of user input of test cases.

Jar files & command line arguments in various cases:

For Test cases file as Input(lab2-test-input.csv): run-test-case.sh
We have implemented the test-case provided and it will generate event log file
“event-log1.csv” and “event-log2.csv” in the same Directory of
Execution from database. The following Jar files will take the command
line arguments as Path to the Configuration file and Path to Test-input file
(lab2-test-input.csv) as arguments. Please place all the Jar files,
configips.csv and lab2-test-input.csv in the same Directory.

gnome-terminal -x sh -c "java -jar GatewayServer.jar configips.csv lab2-test-input.csv; bash"&
sleep 2
gnome-terminal -x sh -c "java -jar tempeSensor.jar configips.csv lab2-test-input.csv; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar HeaterSmart.jar configips.csv lab2-test-input.csv; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar bulbSmart.jar configips.csv lab2-test-input.csv; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar DoorSensor.jar configips.csv lab2-test-input.csv; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar BackendDatabase.jar configips.csv lab2-test-input.csv; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar motionSensor.jar configips.csv lab2-test-input.csv; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar PresenceSensor.jar configips.csv lab2-test-input.csv; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar UserOperation.jar configips.csv; bash"&

For manual Test cases entered as Input by user:
 Part1-- run-part1.sh (Ring Algorithm & Time server):
The user can manually enter the various events in various terminals (if
using a singe machine in the same machine or using different in different
machines). In this case, all the following Jar files will take the command
line argument as Path to the Configuration file(configips.csv) and
“part1” to differentiate between part1 and part2 implementation . This
can run in different Machines by users manually.
gnome-terminal -x sh -c "java -jar GatewayServer.jar configips.csv part1; bash"&
sleep 3
gnome-terminal -x sh -c "java -jar tempeSensor.jar configips.csv part1; bash"&
gnome-terminal -x sh -c "java -jar HeaterSmart.jar configips.csv part1; bash"&
gnome-terminal -x sh -c "java -jar bulbSmart.jar configips.csv part1; bash"&
gnome-terminal -x sh -c "java -jar DoorSensor.jar configips.csv part1; bash"&
gnome-terminal -x sh -c "java -jar BackendDatabase.jar configips.csv part1; bash"&
gnome-terminal -x sh -c "java -jar motionSensor.jar configips.csv part1; bash"&
gnome-terminal -x sh -c "java -jar PresenceSensor.jar configips.csv part1; bash"&
gnome-terminal -x sh -c "java -jar UserOperation.jar configips.csv part1; bash"&

 Execution of these commands will open 9 Terminals in which user can
enter the test cases as illustrated using Sequence Diagrams in this
document. An output file “event-log1.csv”and/or “event-log2.csv”
database file is created by the Gateway with the tuples containing time
stamp values, deviceId, deviceType, currentState, event and inferred
Activity from sensors and devices. You can initiate leader election in
any one the machines or processes.

Part2-- run-part2.sh (Logical clock):
The user can manually enter the various events in various terminals (if
using a singe machine in the same machine or using different in different
machines). In this case, all the following Jar files will take the command
line argument as Path to the Configuration file(configips.csv) and
“part2” to differentiate between part1 and part2 implementation . This
can run in different Machines by users manually.
gnome-terminal -x sh -c "java -jar GatewayServer.jar configips.csv part2; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar tempeSensor.jar configips.csv part2; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar BackendDatabase.jar configips.csv part2; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar HeaterSmart.jar configips.csv part2; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar bulbSmart.jar configips.csv part2; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar DoorSensor.jar configips.csv part2; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar motionSensor.jar configips.csv part2; bash"&
sleep 1
gnome-terminal -x sh -c "java -jar PresenceSensor.jar configips.csv part2; bash"&
sleep 1

gnome-terminal -x sh -c "java -jar UserOperation.jar configips.csv part2; bash"& Execution of these

commands will open 9 Terminals in which user can enter the test cases as
illustrated using Sequence Diagrams in this document. An output file
“event-log1.csv”and/or “event-log2.csv” database file is created by
the Gateway with the tuples containing time stamp values, deviceId,
deviceType, currentState, event and inferred Activity from sensors and
devices.

Executable Script files:

run-part1.sh & run-part2.sh : This Script files corresponds to the
automation of the “For manual Test cases entered as Input by user”
case discussed above. This script is executable and has all permissions. User Just
need to run this script and Terminals Pop up and the user need to enter various
values depending on the statements in the terminal and the Application can be
tested. User Input Needed. The first or second line output in terminal
will convey the operation performed by that process. See Appendix: 1
and Appendix 2

lab2-run-test-case.sh: This Script file corresponds to the automation of the
“For Test cases file as Input” case discussed above. This script is executable
and has all permissions. The script will execute in different Terminals and an
output file “event-log1.csv”and/or “event-log2.csv” database file is
created by the Gateway with the tuples containing time stamp values,
deviceId, deviceType, currentState, event and inferredActivity from
sensors and devices. No Need of User Input. Please wait till all the
execution completes in 3 terminals and the output from the
programs stop (Doesn’t move). See Appendix: 2

 Test Cases Sequence Diagrams:

Leader election process is discussed in the above description (Leader
Selection Algorithm – Ring Algorithm)

1. Events being logged into Backend database:

Figure 1 Logging Events into Database

2. Broadcasting election result and Time server functionality:

Figure 1 Broadcast Result and Berkley Algorithm

3. Event ordering:

Figure 1 Event Ordering

4. Query Database:

Figure 1 Query Database

Performance Analysis:
We have performed experiments on the performance by measuring the
delay from between Gateway and the Sensors.
Push Performance delay test which Gateway Received push temperature
from Motion sensor.
Pull Performance delay test which Gateway pull temperature from
temperature sensor

Interval 500ms(avera
ge)

1000ms 2000ms 5000ms 10000ms

push(report)
delay(milliseconds)

3.454 2.898 3.572 3.452 3.12.3

Pull dealy
(query(milliseconds)

4.224 3.554 4.232 4.522 4.134

Broad cast delay
(milliseconds)

3.756 2.967 3.421 3.653 2.983

From basic statistics of this table, the delay of push and pull are very
small where as pull delay is a more than push.

Conclusion:
 Application can be used to run in Automated test case Mode test cases
provided as a file.
 Application can also run in Manual mode where user has to interact
from the terminal.
 Generated an output file containing the log file tuples of time stamps
and sensor values for automated mode.
 we have extensively tested all the Test cases as mentioned above to
ensure the application is executing as expected.

Appendix 1: part1 Ring Algorithm

Appendix 2: part2 Logical clock

Appendix 3: test-cases , event ordering and automated part1 and part2

Note:

we run our test part1, part2 and part3 successfully in our ubuntu platform
, without too much memory used, and we can get the right output result.
But when we run in the edlab, we have small problem sometimes, which
is out of memor. Is it restricted by memory using in the edlab?

