Project Phase 1: Internet of Things - Smarter Home Edition

Multi tiered Architecture:

The database is implemented in the back end tier and all the sensors and gateway are
assumed to be in front end tier. All the sensors and devices either push events to
gateway or pull events from sensors and devices. Gate way is made to communicate
with the database to populate the database with all the push and pull events from
sensors and devices at a particular time stamp. Gateway can query the database and get
the current status of a device or sensor and can report the particular machine.
Database is Synchronized to avoid multiple threads accessing at same time.

Front End

Sensors and Devices push or pull events to Gateway.
Gateway populates Database with events

Temperature Motion Smart Bulb
Sensor Sensor
User Smart
Process Gate way Heater
A
© C
e 2
Presence Ke) L Door
Sensor > = Sensor
() o
> «©
___________________________ i@ | S — e
Back End £ =)
Responds to Events @ 2 @
and Queries S o
a3 173
el Y
Back End
Database

Figure 1 Multi tiered Architecture

Leader Selection Algorithm — Ring Algorithm:

Leader in this distributed system has to be selected to maintain time synchronization.
Ring algorithm is used to select the leader. Each node in the system has information
about its neighbors and can communicate with them. We can select any machine and
initiate the ring selection algorithm. The initiator machine can start a token with its
id included and pass it to the next machine. The next machine appends its id to the
token and pass to its neighbor. When the token passes through all the machines and
come back to initiator of election then the initiator can iterate through the token to find
the machine with highest id and broadcast the result to other machines.

Door 1D array,_ ID array | Temperature
Sensor SELEEY Sensor
ID arravl€a@der is selected by Initiator l'D array
of election. ID array populates
with membe_r'"s id and' _gets Motion
Smart back to Initiator. Initiator Sensor
Heater Iterates through the ID array to
find Leader with Highest ID
nd Broad cast result. ID array

a

ID array
Smart ID array | Backend
Bulb DataBase

Figure 2 Ring Algorithm implementation

Handling Machine failure Ring Algorithm:
[f a Machine fails then the machine before the node failure performs the leader election

and broadcast the result.

Finds [Leader
And Broadcast

D ID array_ ID array_| Temperature
Se(r:(s)cr)r » GateWay —— 2rray,_ Mlaelan
TID array iID array
If a machine fails,Leader is

Smart determined by the machine
before the failure node which

Heater >
will Broad cast the result. array
ID array
Smart ID array| pBackend
Bulb ' DataBase

Figure Error! No sequence specified. Handling machine failure in Ring Algorithm

Time Server and clock synchronization (Berkley Algorithm):

The leader selected from the above-mentioned ring algorithm performs the clock
synchronization. Once the leader is selected then the leader will act as a timeserver and
requests the current time from the remaining machines. Leader will then compute the
average of the time received from other machines and broadcast the average time to all
the machines. All machines then compute the offset variable based on the difference
between their current time and the time received from the master.

Slave ‘ ‘ Slave
Respond to Server | Respond to Server
1. Send current time | ' 1. Send current time
2. Set Offset variable | | 2. Set Offset variable

Time Server from Ring Algo
1.Request Time from Slaves
2.Broadcast Computed
Average time

Slave ‘ ‘ Slave
Respond to Server f “ Respond to Server
1. Send current time | 1. Send current time
2. Set Offset variable | | 2. Set Offset variable

Figure 4 Time Server Implementation

Lamport's logic clock/vector clock algorithm

Clock syncronization can also be accomplished by logic clock, lamport clock which is useful
for event order. For some concurrent events, we don't care about the order.

We only care about the event that communicates with each other.

If event a happened before event b, then logic value LC(a) < LC(b).

we use lamport logic clock to infer the order of all sensors and devices's events with gateways.

This basic lamport clock is implemented as Fig.5 which only shows four processes.
door, motion, gateway and bulb's logic clock values changes . Others processes will have
similar rules.
1) initialize all the gateway, sensors and devices's LC as 0
2) then according to lamport's algorithm,
Whenever an event occurs locally ati, LCi=LC1i+1
When i sends message to j, piggyback Lci
When j receives message from i
IfLCj<LCithen LCj=max(LCi, LCj)+1

through this rule, we can get a series of event's value in gateway, for example

what is the LC value for motion is sensed, what is LC for door open sensed etc.

we record every event's clock value at gateway side termnial and log them including
logictimestamp, deviceld, devicetype for sending message, event, and device's current status
into the database file

the log format for logic clock in a different database file has the following format which is a
little different from the dabase format from physical clock synchronization

=B

Event ordering

About event order, we can use physical clock synchronization implemented in partl, as
well as this, we can also use lamport logic clock designe in part2.

Takes motion sensor and door sensor data to infer when someone entered or left
the house. For instance, if motion is sensed first and the door open event
happens later, it follows that someone has exited the home. Conversely, if the
door open event is seen first and motion is detected later, someone has entered
the house.

We used this to design a testcase called lab2-test-input.csv to automatically inferred
user came home and left home

Also, we use presence sensor to automatically randomly push event to gateway, if
gateway received presence “on”, we inferred its user's activity.

If gateway receive presence “off”, we inferred its intruder's activity.

The test case would be describer below.

Implementation Platform details

- Java

- RMI

—> Linux Platform supported scripts.

Instructions for running the Code and Test scripts:

The code can be can using three different scripts:

1. run-partl.sh ----- To Manually enter data and test if Leader election(Ring
Algorithm), Time server and Database are working. (Part 1 in Assignment)

2. run-part2.sh ----- To Manually enter data and test if Logical clock
implementation and Database are working. (Part 2 in Assignment)

3. run-test-case.sh ----- To run test cases provided in a “lab2-test-input.csv”
to simulate event ordering and the above parts automatically. This includes
automatically simulating partl and part2 manually tested above.

We have decentralized our code into various Java Packages where each Package
corresponds either to a component (the gateway, a sensor or a device or Back end
database). In order to avoid the complexity and exceptions due to the supporting code
being in different packages, In addition to the source code we have also provided
the executable jar files for each component above described. We have Submitted
Source code to verify code and Jar files to execute.

IP Address Recognition and Allocation:
We are needed to provide only the IP Address of the Gateway in the Configuration file

(configips.csv). The Default IP Address in configips.csv is local host. This [P Address is
needed for all the other components. Each Component can figure out the value of its IP
Address when initiated and will register at the Gateway. Gateway stores the IP Address
and can access the other components when required.

Test-input file:

The Test-input file “lab2-test-input.csv” can be used to assign test cases for the
application when operated by running the automated scripts instead of user input of
test cases.

Jar files & command line arguments in various cases:

For Test cases file as Input(lab2-test-input.csv): run-test-case.sh

We have implemented the test-case provided and it will generate event log file “event-
logl.csv” and “event-log2.csv” in the same Directory of Execution from database. The
following Jar files will take the command line arguments as Path to the Configuration
file and Path to Test-input file (lab2-test-input.csv) as arguments. Please place all the
Jar files, configips.csv and lab2-test-input.csv in the same Directory.

gnome-terminal -x sh -c "java —jar GatewayServer.jar configips.csv lab2-test-input.csv;
bash"&

sleep 2

gnome-terminal -x sh —-c "java —jar tempeSensor.jar configips.csv lab2-test-input.csv; bash"&
sleep 1

gnome-terminal -x sh -c "java —jar HeaterSmart.jar configips.csv lab2-test-input.csv; bash"&
sleep 1

gnome-terminal -x sh —-c "java —jar bulbSmart.jar configips.csv lab2-test-input.csv; bash"&
sleep 1

gnome-terminal -x sh —-c "java —jar DoorSensor.jar configips.csv lab2-test-input.csv; bash"&
sleep 1

gnome-terminal -x sh —-c "java —jar BackendDatabase.jar configips.csv lab2-test-input.csv;
bash"&

sleep 1

gnome-terminal -x sh —c "java —jar motionSensor.jar configips.csv lab2-test-input.csv; bash"&
sleep 1

gnome-terminal -x sh —-c "java —jar PresenceSensor.jar configips.csv lab2-test-input.csv;
bash"&

sleep 1

gnome-terminal -x sh —-c "java —jar UserOperation.jar configips.csv; bash"&

For manual Test cases entered as Input by user:

Part1-- run-partl.sh (Ring Algorithm & Time server):

The user can manually enter the various events in various terminals (if using a singe
machine in the same machine or using different in different machines). In this case, all
the following Jar files will take the command line argument as Path to the Configuration
file(configips.csv) and “partl” to differentiate between partl and part2

implementation . This can run in different Machines by users manually.
gnome-terminal -x sh —-c "java —jar GatewayServer.jar configips.csv partl; bash"&
sleep 3

gnome-terminal -x sh -c "java —jar tempeSensor.jar configips.csv partl; bash"&

gnome-terminal -x sh -c "java —jar HeaterSmart.jar configips.csv partl; bash"&
gnome-terminal -x sh —-c "java —jar bulbSmart.jar configips.csv partl; bash"&
gnome-terminal -x sh —-c "java —jar DoorSensor.jar configips.csv partl; bash"&
gnome-terminal -x sh —-c "java —jar BackendDatabase.jar configips.csv partl; bash"&
gnome-terminal -x sh —-c "java —jar motionSensor.jar configips.csv partl; bash"&
gnome-terminal -x sh —-c "java —jar PresenceSensor.jar configips.csv partl; bash"&
gnome-terminal -x sh —-c "java —jar UserOperation.jar configips.csv partl; bash"&

Execution of these commands will open 9 Terminals in which user can enter the test
cases as illustrated using Sequence Diagrams in this document. An output file “event-
logl.csv’and/or “event-log2.csv” database file is created by the Gateway with the
tuples containing time stamp values, deviceld, deviceType, currentState, event and
inferred Activity from sensors and devices. You can initiate leader election in any
one the machines or processes.

Part2-- run-part2.sh (Logical clock):

The user can manually enter the various events in various terminals (if using a singe
machine in the same machine or using different in different machines). In this case, all
the following Jar files will take the command line argument as Path to the Configuration
file(configips.csv) and “part2” to differentiate between partl and part2

implementation . This can run in different Machines by users manually.
gnome-terminal -x sh —-c "java —jar GatewayServer.jar configips.csv part2; bash"&

sleep 1

gnome-terminal -x sh -c "java —jar tempeSensor.jar configips.csv part2; bash"&
sleep 1

gnome-terminal -x sh —-c "java —jar BackendDatabase.jar configips.csv part2; bash"&
sleep 1

gnome-terminal -x sh -c "java —jar HeaterSmart.jar configips.csv part2; bash"&
sleep 1
gnome-terminal -x sh —-c "java —jar bulbSmart.jar configips.csv part2; bash"&

sleep 1

gnome-terminal -x sh —-c "java —jar DoorSensor.jar configips.csv part2; bash"&
sleep 1

gnome-terminal -x sh —-c "java —jar motionSensor.jar configips.csv part2; bash"&
sleep 1

gnome-terminal -x sh —-c "java —jar PresenceSensor.jar configips.csv part2; bash"&
sleep 1

gnome—terminal -x sh —c "java —jar UserOperation.jar configips.csv part2; bash"&Execution
of these commands will open 9 Terminals in which user can enter the test cases as
illustrated using Sequence Diagrams in this document. An output file “event-
logl.csv’and/or “event-log2.csv” database file is created by the Gateway with the
tuples containing time stamp values, deviceld, deviceType, currentState, event and
inferred Activity from sensors and devices.

Executable Script files:

run-partl.sh & run-part2.sh : This Script files corresponds to the automation of the
“For manual Test cases entered as Input by user” case discussed above. This script is
executable and has all permissions. User Just need to run this script and Terminals Pop up and
the user need to enter various values depending on the statements in the terminal and the
Application can be tested. User Input Needed. The first or second line output in terminal
will convey the operation performed by that process. See Appendix: 1 and Appendix 2

lab2-run-test-case.sh: This Script file corresponds to the automation of the “For Test cases
file as Input” case discussed above. This script is executable and has all permissions. The script
will execute in different Terminals and an output file “event-logl.csv’and/or “event-
log2.csv” database file is created by the Gateway with the tuples containing time
stamp values, deviceld, deviceType, currentState, event and inferredActivity from
sensors and devices. No Need of User Input. Please wait till all the execution
completes in 3 terminals and the output from the programs stop (Doesn’t move).
See Appendix: 2

Test Cases Sequence Diagrams:
Leader election process is discussed in the above description (Leader Selection

Algorithm — Ring Algorithm)
1. Events being logged into Backend database:

.. repoft(state)
--------------------------- > --=99(tup,)
i | TEPOT|(state) .
------------------------------- >--£0g(tupye,
__ r gg_(_)__nt_@tate)
-------------- ~-L09(tupre)
S— r €potti(state) L
............................. 0
e report(state Z"g@‘lp‘l‘-
------------------- 9(tupye)
report(st ol
______ Portstagh-.. bog(tupye) ™
Temperature Door Motion Smart Heater Smart Bulb Gateway Database
Sensor Sensor Sensor Back end

Figure 1 Logging Events into Database

2. Broadcasting election result and Time server functionality:

S i
P 4
Temperature Door Motion
Sensor Sensor Sensor

Leader won
Election

Gateway

Smart Bulb

I_B__r_c-wadcast Result
..................... »

B__r_ciadcast Time
..................... »

Smart Heater Backend Database

Figure 2 Broadcast Result and Berkley Algorithm

3. Event ordering:

R ,_MgtiQD_ Present

Motion sensor

Figure 3 Event Ordering

4. Query Database:

Gateway

Figure 4 Query Database

Performance Analysis:

User injhome

-7 —
Intruder in home

Gateway

Machine current’ Status

User came with
Key chain

User left

Presence sensor

Update Database

Backend Database

We have performed experiments on the performance by measuring the delay from
between Gateway and the Sensors.

—>Push Performance delay test which Gateway Received push temperature from Motion
Sensor.

—>Pull Performance delay test which Gateway pull temperature from temperature
sensor

Interval 500ms(average)|1000ms 2000ms |5000ms |10000ms
push(report) 3.454 2.898 |3.572 |3.452 |3.12.3
delay(milliseconds)

Pull dealy 4.224 3.554 4232 14522 4.134
(query(milliseconds)

Broad cast delay 3.756 2.967 | 3.421 3.653 | 2.983
(milliseconds)

From basic statistics of this table, the delay of push and pull are very small where as
pull delay is a more than push.

Conclusion:

—> Application can be used to run in Automated test case Mode test cases provided as a
file.

—> Application can also run in Manual mode where user has to interact from the
terminal.

- Generated an output file containing the log file tuples of time stamps and sensor
values for automated mode.

- we have extensively tested all the Test cases as mentioned above to ensure the
application is executing as expected.

Appendix 1: partl Ring Algorithm

Terminal

u MultiThreadReceive java RMI registry created.

Do you want to perform Leader Election please enter 1
The logic clock of registering to Gateway Front-End is [e, 2]
The event value of Gateway Front-End is {eventBulbRegister=2}
The logic clock of registering to Gateway Front-End is [0, 2, 3]
The event value of Gateway Front-End is {eventDoorRegister=3, eventBulbRegister
2}
The logic clock of registering to Gateway Front-End is [,
The event value of Gateway Front-End is {eventDoorRegister=
2, eventHeaterRegister=4}
The logic clock of registering to Gateway Front-End is [,
The event value of Gateway Front-End is {eventDoorRegister=
2, eventMotionRegister=5, eventHeaterRegister=4}
log dadad type © name TEMPERATURE
The logic clock of registering to Gateway Front-End is [0, 2, 3, 4, 5, 6
The event value of Gateway Front-End is {eventDoorRegister=3, eventBulbRegister
2, eventMotionRegister=5, eventTemperatureRegister=6, eventHeaterRegister=4}
Y

2, 3, 4]
, eventBulbRegister
2, 3, 4, 5]

eventBulbRegister

= |

[

The election is won by GATEWAY

The Leader and Time Server LSGATEWAY
Broadcasting the Time to Slaves.. .
Broadcasting Done and Time offset is adjusted in Slaves
FlagClockSynchronizationFinished changed

Read the IpAddress from the Configuration file

Door Sensor java RMI registry created.

Do you want to perform Leader Election please enter Y or N
The election is won by GATEWAY

The leader and Time Server iSGATFWAY

!ﬂ@ﬂwm

[sackend Data Base java RMI registry created.

Ready to Log data from other devices and sensors

Do you want to perform Leader Election please enter Y or N
Y

1)

The string is7delim7delim7delim3delingdelimidelim2delimsdelinG
Gate way is the Leader

came into door

The election is won by GATEWAY

The Leader and Time Server iSGATEWAY

came into flag

The offsetvalue for time is set by Using TimeStamp from Master to

.

]
3

136

ND

>

pendix 2: part2 Logical clock

Terminal

Change Smart Device State, Please enter 1
Query Sensor Device State, Please enter 2
Enter your option: 1

Thanks for the option, 1

change Smart Bulb State, Please enter 5
change Smart Heater State, Please enter 6
5

Want to Change to OFF, Please enter @
Want to Change to ON, Please enter 1

6

Wrong input, Please input again

Want to Change to OFF, Please enter ©
Want to Change to ON, Please enter 1

1

MultiThreadRequest begin here

change Smart Device State, Please enter 1
Query Sensor Device State, Please enter 2
Enter your option: 2

Thanks Sacmthonantionmmd

Query T

Query PRead Gateway IP from Configuration File!
Query [iplocalhostSmart Bulb java RMI registry created.
The Bulb is ON

The Bulb is ON

The Bulb is OFF

Read the IpAddress from the Configuration file

Motion Sensor java RMI registry created.

Motion sensor Using existing registry

Please Enter 1 if you change Motion to Motion state Enter © if No motion
Current state is @
logic clock of motion after query_state is [0, 1]
logic clock val of motion after query_state is {eventMotionRegister=1}
Current state is @
logic clock of motion after query_state is [0, 1]
logic clock val of motion after query_state is {eventMotionRegister=1}

s
,"“’
z
™
I
’
B
=

[Read Gateway IP Address from Configuration file!
= Temp Sensor java RMI registry created.
LEEEREB RS 00 you want to perform Leader Election please enter Y or N
[The election is won by GATEWAY
[The Leader and Time Server iSGATEWAY
The offsetvalue for time is set by Using TimeStamp from Master to

ad Ip Address from Configuration File
er Operation java RMI registry created.
ease Enter AWAY if going to Vacation is Present Enter HOME if came home

bd Gateway IP from Configuration File!

ocalhostSmart Bulb java RMI registry created.
you want to perform Leader Election please enter Y or N

b election is won by GATEWAY

Leader and Time Server iSGATEWAY

offsetvalue for
Read Gateway IP from Configuration File!
iplocalhost243 bulb enter here
Need to Report the Prsence State Enter Y or N

(> Terminal

Read the Gateway IP Address from the Configuration File
HeaterImpl java RMI registry created.

Do you want to perform Leader Election please enter Y or N
The election is won by GATEWAY

The Leader and Time Server iSGATEWAY

ine offsetvalue for time is set by Using TimeStamp from Master to :33

* =B =

Read Ip Address from Configuration File
User Operation java RMI registry created.
Please Enter AWAY if going to Vacation is Present Enter HOME if came home

Read the IpAddress from the Configuration file
Door Sensor java RMI registry created.

door state changed, automatically reported
The Current door state is1

The logic clock of door after query_state is
The Current door state is1

The logic clock of door after query_state is
The Current door state is1

The logic clock of door after query_state is

© Terminal

Read the Gateway IP Address from the
HeaterImpl java RMI registry created.
Read the Gateway IP Address from the
HeaterImpl Using existing registry

Need to Report the State Enter Y or N
ieed to Report the State Enter Y or N

Configuration File

Configuration File

Read Gatel
iplocalho
Need to R¢
Y

Need to Report the Prsence State Enter Y or N
Y

Need_to Report the Prsence State Enter Y or N
~LL

Appendix 3: test-cases, event ordering and automated part1 and part2

¥» =0 211PM 3%

a;

[Motion Sensor Current State is : 1 Read Ip Address from Configuration File
motion sensor's is motion yes User Operation java RMI registry created.
Door's event reported= eventYesMotion Please Enter AWAY if going to Vacation is Present Enter HOME if came home
sbulb light is changed successfully
User Away from Home
sbulb light is changed successfully
[Motion Sensor Current State is : 1
motion sensor's is motion yes
Door's event reported= eventYesMotion
Sbulb light is changed successfully Backend Data Base java RMI registry created.
Motion Sensor Current State is : 1 Ready to Log data from other devices and sensors
motion sensor's is motion yes The election is won by GATEWAY
Door's event reported= eventYesMotion The Leader and Time Server iSGATEWAY
Finished TestCasel came into flag
Begin to query database for each sensor current state The offsetvalue for time is set by Using TimeStamp from Master to :576
The Current entry in Database isMachine2 Sensor 12 eventYesMotion I
ntruder entered home
Tt
n Read Gateway IP from Configuration File!
TIRead the IpAddress from the Configuration file iplocalhost243 bulb enter here
Door Sensor java RMI registry created. Need to Report the Prsence State Enter Y or N
election is won by GATEWAY /home /fubao/Dropbox/Courses/cmpsci677_Distributedos/1ab1/D0S_Labs/Lab2/all_Jar|
Leader and Time Server isGATEWAY ash/lab2-test-input.csveilineInformation [code= 1 , name=0]
offsetvalue for time is set by Using TimeStamp from Master to 2lineInformation [code= 2 , name=0]
Current door state isi 3lineInformation [code= 3 , name=0]
logic clock of door after query_state is [0, 1] 4lineTnformation fcode= 4 . name=11
Current door state is1

The Bulb is ON
Read the Gateway IP Address from the Configuration File The Bulb is OFF
HeaterImpl java RMI registry created. The Bulb is ON
Need to Report the State Enter Y or N The Bulb is OFF
The election is won by GATEWAY The Bulb is OFF
The Leader and Time Server isGATEWAY The Bulb is ON
The offsetvalue for time is set by Using TimeStamp from Master to :573 The Bulb is OFF

The Rulh ic on

(<} Terminal

Read Gateway IP Address from Configuration file! 7lineInformation [cod
Temp Sensor java RMI registry created. 8lineInformation [code=
Enter Current Temprature 9lineInformation [cod
The election is won by GATEWAY 10lineInformation
The Leader and Time Server iSGATEWAY 11lineInformation
v The offsetvalue for time is set by Using TimeStamp from Master to : 121lineInformation

0 131lineInformation
14lineInformation
15lineInformation
16lineInformation

%

S

®
T
)
®
B
|
&

Note:

we run our test partl, part2 and part3 successfully in our ubuntu platform , without too
much memory used, and we can get the right output result.

But when we run in the edlab, we have small problem sometimes, which is out of
memor. Is it restricted by memory using in the edlab?

