
Lifestyle-based Personalized Query in Drug Networks ∗

Fubao Wu
University of Massachusetts, Amherst

ABSTRACT
Drugs contains multiple properties including indication, tar-
get, side-effect etc. Common side effects of a drug should
happen to everyone. However, side effects vary among in-
dividuals in real life. For different people with different
lifestyle, such as vegetarian, exercise, they are likely to have
different reactions to a drug. To assist media practition-
ers and patients in prescribing drugs, we provide personal-
ized query system, not only providing drug query’s general
property, but also considering the effect of personal lifestyle
on the drug’s side effect. These data are from user’s posts
in web discussion forum we extract users’ lifestyle informa-
tion and drug-side effects To provide convenient personalized
query support, we extend user’s lifestyle and drug-side effect
information into common drug-side effect database and pro-
vide a personalized distributed query system to find the rich
information about personal behavior’s effect on the drug’s
side effect.

1. INTRODUCTION
To prescribe a drug, medical practitioner needs to con-

sider multiple information about drugs properties, includ-
ing indication, target, side effect. There are some existing
resources like drugBank,SIDER which provides these rich
information. But these information didn’t consider person-
alized lifestyle profile with drug. The lifestyle profile include
physcial activities, weight, vegetarian etc. Because different
users could have different reaction to a drug with different
lifestyle, it is necessary to dig out this information and fur-
ther help practitioner better prescribe drugs. With the pop-
ularities of networks and social media, more and more users
prefer to expose their personal life situation and drug usage
which provide this opportunity to extract personal informa-
tion. Currently, extensive researches on adverse drug reac-
tion(ADR) extraction in pharmacovigilance [?, ?, ?] have
been done. For those existing researches, they still only

∗for use with vldb.cls

Drug

Side Effect

Category

Pathway

Target

Indication

(Drug interaction)

w(Drug,SE,
lifestyle)

Figure 1: Schema of personalized drug graph

consider the general drug-side effect extraction from these
sources. However, there are also other abundant information
in these posts about user life and health behavior. Based on
this consideration, our research is aimed to provide a tool to
do personalized query based on the extracted user lifestyle
and previous database information. commonly, a drug has
side effects, indication, target and pathway etc. Given some
side effects and indications, we query some candidates drugs
to get drugs. In our study,we extend users lifestyle to the
graph schema to personalize the drug graph query. As shown
in the Figure 1, we add an weight W(Drug,SE, lifestyle)
to the drug and side effect nodes based on the extracted
lifestyle information of users. Weight between other nodes
are 1 which is not considered.

In order to cope with the incomplete and noisy data from
database and social media, we not only consider exact an-
swers which are directly connected nodes, but also the indi-
rect query based on metapath methods. We do the following
queries:

(1)Without personalized lifestyle factors, given some known
specific nodes, we want to query a set of drug nodes and get
the top K best candidate drugs. For example, a doctor want
to prescribe some drugs that cure diabetes but it does not
interact with another drug(Aspirin) which is being taken by
the patient.The drugs should also not cause dizziness and
weight gain. This query is shown in Figure 2.

(2)Considering personalized lifestyle, given some known
specific nodes, we want to query top K best candidate drugs.
For example, considering a patient who doesn’t exercise, we
want to prescribe some drugs that cure diabetes but it does
not interact with another drug(Aspirin) which is being taken
by the patient.The drugs should also not cause dizziness and
weight gain which is shown in Figure 3.

1

Weight gain
(SE)

Aspirin (D)

Dizziness (SE)Diabetes(I)

drug?

Figure 2: Example of query graph without lifestyle

Weight gain
(SE)

Aspirin (D)

Dizziness (SE)Diabetes(I)

drug?

w(drug, D, lifestyle)

w(drug, D, lifestyle)

Figure 3: Example of query graph with lifestyle

These drug database could be modeled as a kind of hetero-
geneous information network which contains different types
of entities and different relationship between them. With
the increase of network information and drug database, ef-
fective performing on this query is challenging. Answering
query on drug networks is a subgraph matching problem.

Our study is to provide a distributed query system and
extend our lifestyle factors as personalized query system.
The key contributions of this paper are as follows:

• We construct a classification to mine the user lifestyle
from user posts on a web forum. Use this classification,
we obtained the user lifestyle data which is extended
into the original drug graph.

• We also mine user drug side effect information on the
web forum. Then we match these two data together
with the user id to get users’ lifestyle and drug-side
effect database. According to this data resources, we
construct personalized weight for drug-side effect nodes.

• We extend an personalized lifestyle into drug network
and better help to get personalized result for drug pre-
scription

• We develop a distributed query system, and do general
query and personalized lifestyle query in this system.

2. PROBLEM DESCRIPTION
Our drug database is heterogeneous information networks

which is modeled as drug graph with multiple different nodes,
relationship and weights.

2.1 Drug graph
Drug graph is modeled as a typed graph G(V,E, T,W)

where V is a set of nodes,E is a set of undirected edges, and

T is a set of node types. Every node has a type. We denote
the type of node v by type(v). Each edge between nodes
has an weight. Generally, all the edges’ weight values are
1. While we consider lifestyle between Drug and Side Effect
nodes, it is separately quantified by the extracted database.
For simplicity, we consider an undirected graph. However,
for drug nodes, we have positive edge and negative edges. A
positive edge means a node type has positive effect on drug
type. A negative edge indicates a drug has negative effect
on another node type such as side effect.

As shown in Figure 1, there are 6 different node types.
They are drug (D), pathway (P), drug target (T),side effect
(SE),drug indication (I), drug category(C).

2.2 Query graph
As show in Figure 2. A query is represented as a graph

Q(V,E, T,W). We refer to nodes in the query graph as
query nodes. The query graph follows the same schema
as the Drug graph as a subgraph. There are two groups
of nodes in the query nodes. One is the group of known
nodes(also called reference nodes) which is the query con-
ditions provided by users. The other is set of candidates
nodes(also called variable nodes) which users want to get.

3. METHODOLOGY

3.1 Data Sources
For general query graph, we extract the data from Drug-

Bank, SIDER,KEGG Drug database about drug, drug side
effect, drug indication, drug category, drug target to model
as heterogeneous drug networks.

When considering personalized query, we first consider di-
abetes disease data only to initialize this exploration and
simplify the process, We crawled the data from diabetes.co.uk
forum. It is the leading community website and forum for
people who share their own experiences in relation to dia-
betes and its associated complications. We crawled the fo-
rum thread and parse the following information: title, user
identifier, post date and time and text of each post. Af-
ter crawling these posts, we combined the same users post
together and thence get 6526 users’ posts instance in total
between 2014-2015. The posts are furthered extracted for
lifestyle and drug-side effects.

3.2 Data Extracton
To provide the personal query, we need to collect the per-

sonalized data for the query system. To effective mine the
lifestyle and drug-side effects, we use natural language pro-
cessing and supervised machine learning method.

3.2.1 Lifestyle Data Ming
Lifestyle could have broad implication. Here we consider

the basic aspects, including physical activity, weight loss,
vegetarian etc. To initialize the process of research, we fo-
cus on the exercise-related activity first. To extract the ex-
ercise from users post, we first filter the posts and get 1389
posts that contains exercise-related words. Using this fil-
tered posts as instances for machine learning classification.
All the instances are manually annotated for cross validation
training and testing. The proposed method is as follows:

2

1. we performed the preprocessing such as tokenization, low-
ercasing and stemming of all the terms using porter stem-
mer. We also use stopword from Stopwords Corpus dis-
tributed with NLTK to remove irrelevant information.
2. We use the following features to do classification.
(1)semantic types: tf-idf we compute the tf-idf values for
the semantic terms. We extract the first frequent 10000
words/phrase as dictionary and calculate the tf-idf as our
feature set from our corpus. There are 10000 features here.
(2) N-grams Our second feature set consists of word n-gram
of the comments. N-gram is a sequence of continguous n
words in a text segment. It enables us to represent a docu-
ment using the union of its terms. We use 1-, 2-,3-grams as
features here.
(3)topic-model features we use topic modeling to extract
topic from post as features. Our intuition and observation
from some posts that users in some posts mentions exercise
a lot in his lifestyle situation as a topic which could be help-
ful to differentiate from other posts. We use non-negative
matrix factorization technique to extract the topics and ge
the score of the topic terms as features in each instance.
(4) Exercises and frequency pairs. We observed that in many
posts authors mentions their exercise with the frequency.
For example the following instances from user posts: I walk
for half an hour every day Ive started walking 3 or 4 times
a week I walk or exercise everyday So we consider the fea-
tures: frequency-exercise pairs. We use exercise-related dic-
tionary mentioned before and also generate frequency terms
dictionary in English manually. The frequency dictionary
consists of a group of words(56 in total): constantly, contin-
uously,daily, every hour, every month... We detect whether
a sentence express the idea of this pairs, when a exercise
token in exercise-related dictionary is found, we detect all
the token before the current token and after the token in
the sliding window. If the frequency token is detected in
the window, then the feature is activated which the value is
added. Then we use the accumulated value as the features.
The initial feature value is 0. The window length is currently
set to 5 according to observation of user post content.
(5) PRP-exercise pairs features Considering some users men-
tions exercise lifestyle which is not himself/herself. For ex-
ample: ”you should take exercise every day!” So we consider
the ’I’, My detection with exercise-related features to calcu-
late the score for this pairs in a sentence.

3. we use supervised machine learning methods-nave bayes,
logistic regression, SVM classifiers in our classification set-
ting and compare their performance. 10-fold cross validation
is done in the classification which is 10% are test and 90%
are training data and the classification iteration is 10 times.

3.2.2 Drug-Side Effect Data Ming
To simplify the analysis, we first only consider diabetes

here. Diabetes disease including type 1, type 2 and Gesta-
tional diabetes etc. Ping etc[] analyzed small database about
drug-disease and drug-side effects database extracted from
Drugbank and SIDER database. We use small database to
get the common drugs for diabetes and the corresponding
side effects for these drugs. There are 37 drugs extracted
and 2562 pairs of diabetic drug-side effects obtained There
are common drug-side effect. To do personalized query, we
need to dig out the user’s side effect with the drug taken.
Similarly, we use natural language and machine learning
method drawn from diabetic.co.uk web forum. We filtered

2474 posts mentioning drugs treating diabetes. Also, We
use common drug-side effect as keywords to filter 615 posts
mentioning the drugs and the corresponding side effects. Use
this as training and test data instances, we construct classi-
fier to extract drug-side effects. We use a method proposed
by[] which uses machine learning classification based on the
effective features. We apply ADR lexicon matches, n-gram,
topic-based feature, negation, Sentiword scores as features
to do SVM and NB classification to identify the side effects
in the posts. We matched the data with lifestyle data, we
obtained 145 user posts which mentioned exercise or no-
exercise and drug-side effect in the posts. Other user either
mention exercise or drug-side effect in different group.

3.3 Query Method
We model query as subgraph graph query problem. To

define the nodes similarity,here we use metapath-based sim-
ilarity measures. Based on metapaths of drug query, we use
multiple edges of metapath types which are D-SE edge, D-I
edge and D-D edge, D-P edge, D-T edge etc. for every edge,
we select 5 types of metapaths. The reason we select these
path type is based on the potential relationship between
nodes. For example, the path type D-D-SE is based on the
hypothesis that drugs that interact tend to have similar side
effects. The D-I-D-SE indicate two drugs could share similar
properties-side effect and target. Similarly, other metapath
types have the similar rules to be derived from.

Table 1: three metapath types example

Path ID D-SE edge D-I edge D-D edge
p1 D-I-D-SE D-I-D-I D-I-D-D
p2 D-P-D-SE D-P-D-I D-P-D-D
p3 D-T-D-SE D-T-D-I D-T-D-D
p4 D-D-SE D-D-I D-D-D
p5 D-SE-D-SE D-SE-D-I D-SE-D-D

3.4 Edge Likelihood Function
Using the proposed metapath types before, for every spe-

cific unknown nodes, we need to calculate 5 metapaths(path
ID is 5) in each correspondent edge.Take a SE node as an
example, there are 5 metapaths in D-SE edges. For exam-
ple, the path d1(D)−t1(I)−d2(D)−se1(SE) represents the
relationship where a drug shares a target with another drug
that has a particular side effect. The likelihood of an edge is
quantified as a function of the number of paths in different
path type. Let M = m1,m2, ...,mk be the set of path types
of an edge. Let cml(vi, vj) be the number of paths between
vi and vj that has type ml(1 ≤ l ≤ k). The likelihood of an
edge between vi and vj , denoted by p(vi, vj), is based on a
logistic regression model as follows:

p(vi, vj) =
1

1 + e−(β0+β1·cm1(vi,vj)+...+βk·cmk(vi,vj))
(1)

where β0, β1, ..., βk are the model parameters indicating
the importance of each metapath type.

3.5 Score Function
In a given query, there are multiple known nodes and cor-

respondent likelihood values to a unknown node. Intuitively,
if the edge of the query nodes should correspond to the edges

3

in the query graph. More specifically, if there is a positive
edge between qi and qj , then there should be an edge be-
tween f(qi) and f(qj), the matches of qi and qj . The score of
an answer is defined as a function of these likelihoods based
on this concept. As mentioned before, between nodes,there
are positive edges and negative edges. LetE+

Q and E−
Q indi-

cates the set of positive edges and the set of negative edges
in the query graph, respectively. The score of an answer is
defined as follows:

S(f) =
∏

e(qi,qj)∈E+
Q

p
′
(f(qi), f(qj))

∏
e(qi,qj)∈E−

Q

(1− p
′
(f(qi), f(qj)))

(2)

If there is direct edge between node vi and vj , p
′
(vi, vj) =

1, otherwise p
′
(vi, vj) = p(vi, vj). the first product in S(f)

considers the edge likelihood among the node pairs that are
connected by a positive edge. The second product considers
the complement of the edge likelihood, that is the node pairs
that are connected by negative edges.

4. ALGORITHM DESCRIPTION
We use master/worker models to design our algorithms.

There are one master and multiple workers. Input data
graph are hash-partitioned stored in different workers here.
There is a distributed in-memory state table that is dis-
tributed across the workers. It has structure T (K,V 1, V 2, D)
in which K stores the graph vertices, D stores the partitioned
graph information, V1 and V2 are used to store the old and
new metapath values for different unknown nodes of differ-
ent sources. In every BFS iteration, the metapath number
of every node pair would be updated until the maximum
iteration number is satisfied which achieves the termination
condition. The maximum iteration number is decided by
the maximal length of metapath types of an edge for a given
node pair.

4.1 Subgraph Query Algorithm
To get the topK answer score of unknown nodes for a

subgraph query, there are two main steps. Firstly, we need
to get the metapath values of traversed unknown nodes for
different metapath types. Secondly, we calculate the likeli-
hood function for between unknown nodes and known nodes
pairs.Then, we can get the final answer score of the query
based on the likelihood and positive edges or negative edges.

To get the topK answer score of unknown nodes for a
query, there are two main steps. Firstly, we need to get
the metapath values of traversed unknown nodes for dif-
ferent metapath types. Secondly, we calculate the likeli-
hood function for between unknown nodes and known nodes
pairs.Then, we can get the final answer score of the query
based on the likelihood and positive edges or negative edges.

The whole process for a subgraph query is shown as Al-
gorithm 1.

4.1.1 Calculate Metapath Numbers
We calculate every possible unknown nodes’s metapath

number values to get the likelihood. Intuitively, there are
massive calculation of unknown nodes. However, These pos-
sible unknown nodes are determined by the BFS traversed

Algorithm 1: subGraphQueryTopK(G,V S
Q ,K)

Input: data graph G, one set of known nodes V S
Q ,

metapaths MP , K
Output: topK query answer
InitializeGraph(G)
iterationNum←− max(metapath length)
while iterationNum do

if not first iteration then
update V 1←− V 2
initialize V 2←− 0

end

metapath values MPVals(V T) ←−
OneIterationMetapath(V S

Q ,MP)
iterationNum = iterationNum− 1

end

top-k Answer(W ,K) ←− TopKAnswers(V T ,
MPVals(V T))
return Answer(W ,K)

level which is decide by the maximal metapath length. Specif-
ically, for different metapaths type, here the maximum length
of metapath is 4. If we do BFS search from one unknown
node, only 3 levels of iteration(that is, the maximum itera-
tion number is 3) are needed to calculate the number of that
metapath and only the traversed unknown nodes, denoted
by V T , are needed to be computed. Therefore, the computa-
tion expense of BFS is acceptable. Specifically, there are two
parts in calculating metapath numbers. One is to do BFS
to get the traversed nodes’s metapath. The second part is
to update the old metapath value from new metapath val-
ues in table. In the first part, for each BFS iteration of one
source, we operate BFS in distributed workers. The mas-
ter would notify workers to do BFS with assigned iteration
level. When one iteration finishes, every worker maintains
a queue storing the nodes for next BFS traversal.

In the second part, when one iteration finishes in each
worker, because different workers may finish iteration at dif-
ferent paces, Here we use synchronized method. When one
iteration finishes, it will send message to master. While the
master receives all the workers’ notifications, it will notify
all workers to begin updating old metapath number from
new metapath number, which is to copy metapath number
in V2 to that in V1 and meanwhile initialize V2 to 0 for
each visited node from last iteration.

Algorithm 2 shows one iteration executed for calculating
metapath number of multiple unknown nodes for a subgraph
query in distributed workers. In one iteration, the most
important work is to store the qualified data node(which
node’s type is in the metapath) and queue the visited data
along the metapath for next iteration visit in each worker.

4.1.2 Calculate Top-k Scores
When all the workers finish the iteration numbers notified

by the master, they will begin to calculate the edge’s like-
lihood function and score function locally. For every BFS
visited nodes in queue, they calculate their likelihood ac-
cording to equation 1 function and score function according
to the equation 2. After they have obtained the local top-
k score answers for visited nodes V T , they send the local
scores to the master and the master would receive all the
aggregated worker’s local scores. Then master sorts the re-

4

Algorithm 2: OneIterationMetapath(V S
Q ,metapath

MP)

Input: data graph G, a set of known nodes V S
Q ,

metapaths MP
Output: queue q[w] along the metapath in each worker
initialize queue for in every worker
for every metapath p in MP do

for every known node si in V S
Q do

initialize mp[si][p]←− 1 in table V1, V2
end

end

for every known node si in V S
Q do

for every meathpath p in MP do
while queue u not empty do

u←− queue(u)
if u’s mp[si][p] empty then

initialize u’s mp[si][p]←− 0 for table V1,
V2

end
for all w ∈ all u neighbors do

if w type is in the metapath p then
if w is in local worker then

add mp[si][p] in V 1 to mp[si][p] in
V 2
enqueue local worker q[w]

else
send to worker j where w is stored
add mp[si][p] in V 1 to mp[si][p] in
V 2
queue q[w] in worker j

end

end

end

end

end

end
return;

ceived node scores and get the global top-k score answer
result for query.

4.2 Lifestyle-based Personalized Query
It is common in some situation, drug would have differ-

ent side effect on persons who have different lifestyle. Based
on the proposed general subgraph query above, we extend
the the lifestyle factors to personalize this query.It is impor-
tant to quantify the weight for different lifestyle. Here we
consider exercise database as an initiative. Based on the ex-
tracted information about user exercise and drug-side effect
information, we generally know whether user has mentioned
an side-effect of drugs and nodes with exercise or not. Be-
cause of the information extracted are noisy and incomplete,
we use different weight assignment to different situation.The
drug graph is extended so that the existence of each edge
is conditioned based on patient’s lifestyle. We define a per-
sonalized weight wG(vi, vj , L) to represent the association
strength between node vi and vj . the range of wG(vi, vj , L)
is in [0,1]. In the general graph schema, the weights between
any nodes are assumed to be 1. But here for personal query,
It is quantified according to different lifestyle and we only
consider the weight between Drug and Side Effect nodes.

The lifestyle L is a collection of exercise, vegetarian, weight
gain/loss, sleeping et.c Currently, we only have the exercise
lifestyle data available.

Here there are two factors that affects the weight of node
di and Side effect Sei. One factor is the number of e informa-
tion about lifestyle L and drug-side effects Count(di, Sei, L)
extracted in the post, the other is whether the general drug-
side effect exists. We assign the weight coefficient based on
these two factors and get four different weight values in the
Table 2

Table 2: weight assignment for drug-side edges

General vi and vj exists Count(vi, vj , L) > 0 wG(vi, vj , L)
True True 1
True False 0.75
False True 0.25
False False 0

We assign different confidence level to different situation,
giving more level to the general drug graph.The associa-
tion between drug and side effect is the strongest if both
general drug-side effect exists and extracted drug-side ef-
fect for lifestyle exist. Considering the bias for extraction of
drug-side effect with lifestyle, there could be better weight
assignment to be explored, but our study is only to provide
an initiative tool for this exploration.

Base on this measurement of lifestyle on drug-side effect,
we need to modify the likelihood measurement p′(vi, vj) in
equation 2 when considering personalized query. If no per-

sonalized profile L is indicated in the input query: p
′
(vi, vj)

is the same as the original one p(vi, vj) If personalized profile

L is not provided, p
′
(vi, vj) is the personalized weight-wG(vi, vj , L).

The equation is as follows:

S(f) =

∏

e(qi,qj)εE
+
Q
p
′
(f(qi), f(qj)) ·

∏
e(qi,qj)εE

−
Q
(1− p

′
(f(qi), f(qj)))

.... profile L is empty∏
e(qi,qj)εE

+
Q
wG(vi, vj , L) ·

∏
e(qi,qj)εE

−
Q
(1− wG(vi, vj , L))

.... profile L is not empty
(3)

5. DISTRIBUTED IMPLEMENTATION

Since a single machine has limited memory and computa-
tion resources, we design a distributed system to store the
web-scale information networks graph and execute our algo-
rithm for drug query.

5.1 System Overview
Our system is implemented based on a distributed graph

computation framework, Piccolo [?], which consists of one
master process and multiple worker processes. Figure 4
shows the architecture of our system. In the system, the
master coordinates the workers to perform metapath itera-
tion calculation and the termination check of all algorithms.
Distributed in-memory state table is also shown in Figure 4.
For efficiency, the data graph is stored in an in-memory
state table that is distributed across workers. Each data
node corresponds to one row in the table. The row asso-
ciated with a node v, row(v), stores the metadata of node
v including the node name, the node type, and the neigh-
bors keys. Additionally, row (v) contains a hash map that

5

metadata Old Metapath
number

New metapath
number

v1

v3

name type neighbor list

metadata Old Metapath
number

New metapath
number

v2

v4

Hash<v1, list[mp(v1,v4)]> Hash<v1, list[mp(v1,v4)]>

Worker 1 Worker 2
v1

v3

v2

v4

Master

Update metapath
number

Progress of BFS

BFS(v1) Iteration Finished
Workers

...

Distributed In-Memory State Table

Figure 4: System Architecture.

stores the old(current)metapath values of different metap-
ath types between the known nodes and unknown node v,
and the new(next) one between them. Each worker stores a
partition of the metapath values of different metapath types
between the known nodes and unknown node v.Each worker
stores a partition of the state table. In our implementation,
we assign data nodes to every worker by applying a hash
function to the node keys, but other partition strategies can
also be applied. With the distributed in-memory state ta-
ble, we next show how to perform the distributed metapath
values calculation and the distributed termination check.

5.2 Distributed Metapath Calculation
For doing metapath calculation, a totalmax(MP length)*V S

Q

BFSes are needed in which max(MP length) is 4 here. The
complexity of metapath calculation is O(V S

Q ∗V T). The mul-
tiple known nodes’ BFS are performed simultaneously(from
Algorithm 2). To do multiple BFSes, we use the strategy
shown next.

Multiple BFSes. To implement multiple BFSes con-
currently, we need to distinguish nodes visited for different
known nodes and workers. We set a node and worker Id as
a key. For example, there are common nodes that need to
be visited in different worker for different known u and v.
In the worker with Id 0,we designate key u + 0, v + 0. In
the worker with Id 1, we designate key u+1, v+1 as key to
differentiate the queue. Then we assign each worker a queue
with the key. The queue stores the visited neighbor nodes
in hash structure < key, V T > for next iteration. When one
worker finishes its current iteration, it would update the
new metapath number for the known source in distributed
in-memory state table and send finishing notification to the
master.

Expanding BFS. Each iteration of a BFS finishes when
all workers have finished processing for that iteration. The
master keeps track of these workers that have finished the
iteration and notifies these workers to expand the next BFS
when the iteration is completed.

5.3 Distributed Termination Check
We now discuss how to perform termination checks when

the answer scores are distributed across the workers. We dis-
tribute the termination check workload among the workers.
Each worker first finds its local top-k candidates (according
to the BFS traversal level designated by master) and sends

Figure 5: ROC with tf-idf,n-gram and topic model features.

Figure 6: ROC with frequency-exercise and PRP-exercise
pairs features.

them to the master. The master finds the global top-k candi-
dates among the local top-k candidates. Additionally, each
worker is responsible for checking the top-k condition and
calculate the local candidate scores on its local nodes. Using
the results from the workers, the master determines whether
the real top-k candidates are found.

6. EVALUATION
In our study, we have three parts of evaluations, we show

the results of lifestyle extraction, distributed query system
scalability, and the query answers based on lifestyle.

6.1 lifestyle extraction
In the lifestyle extraction, we use multiple classification

methods and combine multiple features mentioned to do
classification tasks. Nave bayes, logistic regression, SVM
classfiers are used in our classification. We use nltk-tools [?]
and scikit-learn packages [?] to help our implementation of
the extraction.

we compare the different features and show the different
result for the experiments (1)tf-idf, n-gram and topic mod-
eling features result

(2)We consider only frequency-exercise and PRP-exercise
pairs features to get the result in Figure 6

(3) Combiing all the features result shown in Figure 7
Comparing to these classification, We find use frequency-

exercise and PRP-exercise pairs features to get the best

6

Figure 7: ROC with All the features combined.

performances,the ROC score and achieve 0.74 using SVM
classification and logic regression. This is because the fea-
tures designed for social media can be effectively reflect the
complexity of text expression. However, the performance is
needed to be improved in the future work.

6.2 distributed query system scalability
to measure the distributed query system scalability, we

use these test environments. We have basic test input pa-
rameters: graph size is 1 million nodes, topK is 10 and query
size is 20 sources nodes, worker number is 4. If we test one
element, we will change one of its parameters, keep other
parameters fixed.

Varying worker numbers
Figure 8a shows the scalability with the numbers of vary-

ing worker numbers in local cluster.The speedup ratio is 0.78
on average.

Varying top K number Figure 8b shows the scalability
with the numbers of varying worker numbers in local cluster.

Varying query Size
Here we test the different numbers of given sources nodes.

we are given different sources of numbers and one unknown
drug node to query. Figure 9a shows with different query
Size result

Varying graph Size
Figure 9b shows with different graph size increase.

6.3 lifestyle query answering
In this section, we illustrate the usefulness of our query

system by showing examples of the query results returned
from our system and the personalized lifestyle results when
considering lifestyle.

First, we show the top results for the query

(a) Increasing worker number

(b) Increasing K size

Figure 8: Query worker number and K size scalability

7

(a) Increasing query size number

(b) Increasing graph size

Figure 9: Query size and graph size scalability

8

