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Abstract

Human pose estimation has been an active research area
in computer vision with wide applications in action recog-
nition, event detection, and human-computer interaction,
and so on. With the advancement of deep learning, more
and more deep neural networks based pose estimated have
been proposed for images and videos. However, the re-
source computation demand for the deep neural network-
based pose estimation has been challenging for real life de-
ployment to detect human poses especially in video streams.
Given the input accuracy requirement, we propose a pose
estimation framework for video streams to reduce the com-
putation and maintain the accuracy requirement. We lever-
age the video temporal characteristics to dynamically select
a suitable model to detect human poses interchangeably.
Two models, which are a full deep neural network model
with high accuracy but high computation resources, and a
compressed model with low computation resources but a lit-
tle accuracy loss, are utilized in the framework. We experi-
mentally test on two image datasets and one video dataset,
and shows the effectiveness and efficiency of our method,
which greatly reduces the computation resources by 48%
with just 2% accuracy loss in the video dataset.

1. Introduction

Human pose estimation [2, 23] is to localize a human
joint keypoints (e.g., elbow, wrist, etc.) from images or
videos, which is a challenging problem. It has broad ap-
plications in human action recognition, event detection,
human-computer interaction, animation, etc.

As in the Figure 1 shows, the keypoints detected consist
of 18 points that are ankles, knees, hips, shoulders, elbows,
wrists, necks, torsos, and head tops in this project.

With the advancement of deep learning, there are a lot of
improvements on the accuracy of detecting the complex hu-
man pose. Recently methods build a neural network on each
one whole image/ one frame in the video. The features are
extracted from the whole images [23, 25, 5, 9]. For lots of
applications and content setting like a person walking , run-
ning or dancing, it is too time-consuming or trivial to do hu-
man pose with a very complex deep neural network model

Figure 1: Human pose keypoints used for detection

when there are lots of redundant or repeated information in
the video. Existing methods of pose estimation are cate-
gorized into two types. The first type is top-down method,
which detects human body first with a neural network model
and then detects the pose within the human body with an-
other neural network model [26, 5]. The second type is to
detect human pose from bottom-up, which directly designs
a neural network to detect the pose from scratch [2, 23].
Both methods, though presenting a high accuracy, are time-
consuming to train and deploy in real-life applications. It is
especially not suitable for the real time application setting.

We propose a new approach to detect human pose con-
sidering the temporal characteristics of videos [10] to detect
human pose in an efficient and also accurate way. Most time
of a video has temporal characteristic that redundant frames
exist, or the objects keep relatively no or tidy movements
during a period of time. We consider the temporal char-
acteristics and schedule between the expensive full-version
neural network model (abbreviated as full model) and its
compressed neural network model [12] (which is a simpli-
fied model of [12]the original full model, abbreviated as
compressed model) to achieve pose estimation. First, we
divide a video into multiple periods. In each period, in the
beginning segment of the period, we use a controller to de-
cide to select a full model or compressed model. Then the
selected model will be applied to the rest time of this pe-
riod. Then for the next period, we use the same strategy
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again, which could ensure the accuracy above the certain
threshold and also detect human poses as fast as possible.

We use two pose estimation image datasets to train
our model and test on another video dataset to verify our
method and the system.

The contribution of this work are as follow:

• We propose a dynamic framework for pose estimation
efficiently and effectively for video streams.

• We design a compressed neural network model to train
and validate for pose estimation.

• We develop a pose estimation system for video streams
and experimentally verify the effectiveness and effi-
ciency compared to the baseline models.

2. Related Work

In computer vision area, classical computer vision meth-
ods for pose estimation focus on modeling the human struc-
ture and inter-connectivity among body parts and rely on
hand-crafted features [21, 6, 11]. Currently the most ef-
fective way to detect human poses is through deep neural
network methods [23, 25, 5, 9, 7, 24, 19, 3, 16, 18, 13]. Re-
cent advancement on pose estimation based on deep neural
networks are categorized as top-down and bottom-up tech-
niques. Top-down technique [23, 25, 5, 9, 7, 24, 19] is to
detect the human body in the images or frames first and then
identify its keypoints. Bottom-up technique [3, 16, 18, 13]
directly detect the keypoints of a person/multiple persons
from an image or frames in videos. Openpose [2] is a
bottom-up method that proposes several stages of convo-
lutional neural networks to greedily parse multiple persons’
parts and their associations. It is a classical deep neural net-
work model to detect human poses with high accuracy for
multiple persons but it is also not efficient to apply it for
real life deployment, especially in real-time. Our method is
based on the Openpose in which we use it as the full model
and propose a compressed model based on it.

There are also some pose estimation methods focused on
video detection with temporal and appearance information
across frames [17, 22, 8, 14]. [22] considers optical flow
and deep convolutional networks as input motion features.
Other methods [8, 14] consider using the recurrent neural
networks (RNN) for the sequence-to-sequence model for
structured output prediction with the temporal characteris-
tics, although the RNN method has a notable accuracy, but
it suffers from the expensive computations. Our method ex-
plores the temporal characteristics of video frames and con-
siders the redundant and repeated frame information to dy-
namically change the suitable models to satisfy the accuracy
required and also greatly reduce the resource computation
for efficient computation.

3. Methodology
In a human video content setting, sometimes the per-

sons move fast and behave complicated, sometimes the per-
sons move slowly or with easy pose. Consider the com-
plex model with high accuracy but also high computation
resources, it is not efficient to apply this complex model
for some video applications. We could use a compressed
model for some simple video periods which use simple
compressed model with less computing resources but also
an acceptable accuracy requirement, and change back to
complex full model whenever there is a complex video con-
tent settings.
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Figure 2: Our proposed pose estimation framework for
videos

3.1. Proposed Human Pose Estimation Framework

Based on that temporal characteristics, we propose a dy-
namic architecture to detect human pose interchangeably
with two different models.

The framework is shown in Figure 2. Assume the appli-
cation requirement for the accuracy threshold is Amin, and
the video can be divided into several periods, such as period
p1 and period p2, and so on shown in the figure, in each pe-
riod, we use a controller to decide to select the full model or
compressed model for pose estimation. In each period such
as p1, we use a small time segment s1 in the beginning of
the period as the base for the controller. The controller uses
the following way to decide which models to use for the
rest part of the period. If there is a ground truth, we use the
compressed model to detect human poses in the time seg-
ment. If the compressed model generates an average accu-
racy above the accuracy threshold Amin, then we continue
to use this compressed model for the rest of segment. If the
compressed model’s average accuracy is below the thresh-
old Amin, we will use a full model to detect the human
pose. However, if there is no ground truth for the video,
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we use the full model as the ground truth, then we detect
the human pose in the time segment s1 of the period both
with full model and compressed model. If the compressed
model’s average accuracy in s1 is better than the threshold
Amin, we use the compressed model to detect the human
pose for the rest of the period s1, otherwise, we use the full
model. If the full model’s average accuracy still could not
achieve the accuracy threshold in the segment time, we use
full model for the rest of the period. Therefore, we could
ensure the accuracy and also improve the efficiency. For
period p2 and other periods in the video, the same strategy
is applied.

3.2. Full Model

Our full model is based on the classic human pose esti-
mation model Openpose [2]. We brief introduce the model
here. It takes an image as input, uses the multi-stage convo-
lutional neural networks to detect body parts, then associate
them for multiple persons’ pose estimation, and finally out
all the persons’ poses. As shown in Figure 3, the model
takes as input an image, then through several stages of co-
volutional neural network (CNN) layers and output the 2D
locations of joint keypoints for each person in the image.
Each stage’s output heatmap is connected with the original
image features together into the next stage’s convolutional
neural network output, and so on until the output.

Figure 3: Full model for pose estimation

Each stage of CNN layers simultaneously predict detec-
tion confidence maps and affinity fields that encode part-
to-part association for multiple persons in the image. As
shown in the Figure 4 in the stage t, receiving from the in-
put F from the last stage, t − 1 the stage is split into two
branches, the first branch of the stage is to predict confi-
dence maps St, the second branch of the stage is to predict
affinity fields Lt. Each branch consists of 5 convolutional
blocks and 2 convolution layers with 1x1 filter size. Each
convolutional block is composed of 3 convolutional layers
with 3x3 filter size. Each stage has the same structure as
stage t. The total loss of all the stages is the combination
of the loss of the confidence map and affinity field at each
stage:

f =

T∑
t=1

(f ts + f tL) (1)

Figure 4: Each-stage convolutional neural network with two
branches

Where

f ts =

J∑
j=1

∑
p

W (p) ·
∥∥St

j(p)− S∗
j (p)

∥∥2
2

(2)

f tL =

C∑
c=1

∑
p

W (p) ·
∥∥Lt

c(p)− L∗
c(p)

∥∥2
2

(3)

L2 Least Square Error is used between the estimated pre-
dictions and the ground truth maps and fields. The stage
number is a user input parameter, in this project, the full
model uses 5 stages.

3.3. Compressed Model

Our compressed model is inspired from this to compress
the CNN model with fewer model layers and unit size to
get a new neural network model, which has much higher
efficiency but a little accuracy sacrificed.

We compress the stage, the convolutonal layer and filter
size to reduce the full model to a compressed model. To re-
duce the computation resources and do not sacrifice the ac-
curacy much, we propose a compressed model with 2 stages
of the original full model. In each stage, we use 3 convolu-
tion blocks and 1 convolutional layer with 1x1 filter size to
learn the confidence map and affinity fields. The convolu-
tion block is also reduced to 2 convolutions with 3x3 filter
size. The L2 loss is used as the same as the full model.

3.4. Selection between Full Model and Compressed
model

There is a trade-off between full model and compressed
model. Generally speaking, the full model has high accu-
racy but high computation resources, the compressed has
lower computation but lower accuracy. The selection of seg-
ment and period are important parameters that needs to be
decided. It is challenging to automatically decide the val-
ues by the system. In this project, we just simply set this
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as input parameter to be decided by users and recommend
the best values for value. These parameters could impact
the final performance of accuracy and efficiency for human
pose estimation. We will show the impact of different pa-
rameters on the performance and get the best recommended
values for different accuracy threshold requirement.
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Figure 5: Our proposed compressed model

The loss function

4. Experimental Evaluation
4.1. Dataset

Table 1: Dataset statistics information

Dataset Total Instances Training+
validation Test

MPII Pose
(images) 25k 20k –

COCO Pose
(images) 200k 150k –

Youtube Pose
(videos) 30 – 30

We use image datasets from MPII pose dataset [1] and
COCO pose dataset [15] with humans. We trained our spe-
cialized neural network model on these dataset to make it
satisfied a certain accuracy. The pose in the image and
frames dataset are already labeled. Then we test our model
on the video VGG video dataset [4] to show the testing re-
sult and compare with baseline models. The code link is in
the google drive: Code.

The dataset statistics is shown in Table 1.
MPII dataset: MPII dataset is the state of the art bench-

mark for evaluation of articulated human pose estimation.
The dataset includes around 25K images containing over
40K people with annotated body joints. We use 20k anno-
tated images to train and validate our compressed model in
our project.

COCO pose estimation dataset: COCO pose estima-
tion dataset are from COCO keypoint challenge dataset,

which requires simultaneously detecting people and local-
izing human keypoints.

The COCO train, validation, and test sets contain more
than 200k images and 250,000 person instances labeled
with keypoints (the majority of people in COCO at medium
and large scales). We use 200k annotated images to train
and validate our compressed model in our project.

VGG pose estimation dataset: The VGG pose estima-
tion dataset used here is the YouTube Pose dataset, which is
a collection of YouTube videos for human (mainly upper)
body pose estimation. The videos found on YouTube cov-
ering a broad range of activities and people, e.g., dancing,
stand-up comedy, how-to, sports, disk jockeys, performing
arts and dancing sign language signers. We use 30 videos
of them in our project as the test dataset.

4.2. Metrics

Given the prediction and ground truth of pose keypoints,
the similarity metric between them is calculated based on
object keypoint similarity from the COCO standard.

Object keypoint similarity (OKS) We measure the
quality of human pose estimation result with OKS metrics.
We use the definition of commonly used by COCO dataset
[20]. It is measured based on the normalized Euclidean
distances between each ground truth and detected keypoint
shown below.

OKS =

∑
i[e

−d2
i /2s

2k2
i δ(vi > 0)]∑

i[δ(vi > 0)]
(4)

where di are the Euclidean distance between each ground
truth and detected keypoint and the vi are the visibility flags
of the ground truth (the detector’s predicted vi are not used).
Other parameters could be referred to [20]. OKS has the
range in [0, 1]. The higher the value, the more accurate of
the detection.

Then pose estimation accuracy metric used to measure
the accuracy is the average values of OKS at different values
[0.5 : 0.05 : 0.95].

4.3. Training and Validation

For the full model, we use the pretrained model publicly
available as our model to detect human pose. For the com-
pressed model, we have to train the model from scratch.

Here we show the validation loss as in Figure 6. The
training loss is the average loss of each image in the dataset.
It shows it has good loss for the validation loss result during
the training process on both image datasets.

4.4. Result on the Validation Dataset

We show the performance statistics of full model and
compressed model on the validation datasets in Table 2. It
shows the full model on the image dataset achieves overall
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(a) MPII dataset validation loss

(b) Coco dataset validation loss

Figure 6: Validation Loss for compressed model

61.4% and 75.6% with around 0.25 sec executed on an im-
age on average on a GPU server. The compressed model
has dramatically reduced the time to 0.08 sec on the same
setting, which is about 3x less of the time on the full model,
but with about 9% accuracy loss on the average.

Table 2: Performance result on validation data

Model Validation
dataset AP (%)

Time (s)
(average of each
image on a GPU
server)

Full
model

COCO 61.4 0.265
MPII 75.6 0.243

Compressed
model

COCO 52.6 0.082
MPII 65.8 0.078

4.5. Test video dataset result

We show the test result on the 30 video dataset in Table
3. The parameter of time period p = 4s, the segment s = 1.
The user accuracy threshold is set as 0.85.

Table 3: Youtube video detection result

Method AP (%)

Time (s)
average of each
frame on a GPU
server)

Full model 88.9 0.213
Compressed model 83.6 0.083
Our dynamic architecture 86.7 0.136

4.6. Impact of parameters

There are three parameters involved in our method. The
user input accuracy threshold, the period time and the seg-
ment time. We evaluate the impact of these parameters on
the pose estimation accuracy and the computation resources
on 5 videos, and report the average values of the results
by varying one parameters and fixing the other parame-
ters. Figure 7 shows the result with different input accuracy
thresholds. It shows the monotonically increasing relation-
ship between the accuracy/computation resources with the
input accuracy, which there is a good trade-off where the
input threshold is around 0.84. Figure 8 shows the result
with different input period time. It shows the monotonically
decreasing relationship between the accuracy/computation
resources with the period time. It is good to choose a trade-
off value of period time around 4 to 6 sec. Figure 9 shows
the result with different input segment time. It also shows
the monotonically decreasing relationship between the ac-
curacy/computation resources with the segment time. It is
good to choose a trade-off value of segment time around 1
to 2 sec.

Figure 7: Varying the input accuracy threshold. Period time
is set 4 sec, segment time is 1 sec

4.7. Pose estimation video demonstration

Here we show two videos’ pose estimation results of our
proposed method here. The input accuracy threshold is set
as 0.85. The period time is 4 sec, the segment time is 1
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Figure 8: Varying the period time. Input accuracy threshold
is set 0.85, segment time is set 1 sec

Figure 9: Varying the segment time. Input accuracy thresh-
old is set 0.85, period time is set 4 sec

sec. Figure 10 shows the part of the frames extracted for
demonstration in video 1. Figure 11 shows the part of the
frames extracted for demonstration in video 2. The yellow
lines indicate when the compressed model is used, the color
lines indicates when the full model is use. When the human
moves faster, the full model is generally used. When the hu-
man moves slower, the compressed model is generally used.
It shows the effectiveness of our proposed method which
satisfies the accuracy threshold requirement with very few
computation resources.

5. Conclusion

In this project, we propose an effective and efficient
method to detect human pose in video by considering the
temporal characteristics in video content setting. We have
experimentally test the method on two image dataset and
one video dataset. It shows the effectiveness and efficiency
of our pose estimation method. Compared to the full model
of baseline, it greatly reduces the computation resources by
48% with just 2% accuracy loss in the video dataset and al-
most the real time execution, which is satisfied with the real
life deployment. For the future work, the period and seg-

ment time is fixed in current work. Therefore, it might be
worth to explore the period and segment time values, which
are better to be dynamically set by the system according to
video content settings.
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Figure 11: Demo of frames in video 2 pose estimation
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