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Abstract

Autoencoder is a good way to represent data and could be used for many applica-
tion inference in classification and regression. Several variations of autoencoder
are being proposed recently. The accuracy of the classification with autoencoder is
heavily explored, however, the fairness and bias of classification with autoencoder
representation is still an ongoing research. In this paper, we explore the recently
proposed autoencoder ”coupled variational autoencoder" which focuses on improv-
ing the accuracy and robustness of the probabilistic inference on the represented
data. We explore the group fairness of the learned representation for classification.
We consider several different sensitive attributes by the defined group fairness,
and compare the difference with the general variational autoencoder. It shows
this variational autoencoder has different degrees of biases with different sensitive
attributes and most of them have good indications for fairness against gender on
small credit card datasets, but not good on the fairness against race on the UTKFace
dataset.

1 Introduction

Autoencoder [17, 23], as a specific type of neural network to reconstruct the input, has important appli-
cations in unsupervised learning to be the "informative" representation of data. Thus the representation
is also effectively used for classification and regression. The accuracy on the learned representation
is highly explored, but the fairness is still an ongoing research [6]. The bias/discrimination in the
prediction tasks could be from the biased data or the algorithm. In this project, we explore the
unexplored fairness property of a recently proposed machine learning model-coupled variational
autoencoder. It was proposed by Cao et.al [8] in 2019, and claimed to improve the robust accuracy of
the probabilistic inferences on represented data. The coupled variational autoencoder is modified with
coupled cross-entropy and coupled KL divergence for loss function based on the general variational
autoencoder. We investigate the group fairness property with regards to several sensitive attribute
pairs.

The group fairness is defined as follows. Given label examples (x, a, y) ∼ pdata where y ∈ Y are the
labels, we want to predict. x and a are attributes where a is sensitive attributes, and x is non-sensitive
features.

A classifier has a predictive y = f(x, a) (or y = f(x)) that achieves a certain group fairness criteria
with regard to sensitive attributes a. If a prediction ŷ is completely independent of the sensitive
attributes ŷ ⊥ a, we think the it achieved demographic parity fairness in general. If it is not complete
independent, then we think it leads to certain unfairness. Therefore, we define a metric called
demographic parity distance as the fairness distance to measure how the model is fair

Ddp = |E[ȳ = 1|a = 1]− E[ȳ = 1|a = 0]| (1)

The smaller Ddp, the more fairness it is to the sensitive a.
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We investigate how the learned representation for coupled variational autoencoder is fair to multiple
attributes for classification based on the the definition of Ddp. The experiments are done on a small
default of credit card, a German credit risk, and one UTKFace image dataset and we compare the
fairness with the general variational autoencoder as the baseline model. The experimental results
show the coupled variational model has very good fairness on first default of credit card dataset
against gender, education level, but not good against the gender, job skill level, and race attributes on
the German credit risk and UTKFace image dataset. It has also similar fairness on the gender and
sensitive model around the two credit card dataset compared to the general variational autoencoder
model, but performs worse than on the image dataset.

2 Novelty Statement

The recently proposed representation algorithm-coupled variational autoencoder [8] was modified
from the general variational encoder. It is claimed to be robust and high accuracy, but the bias and
fairness properties are not explored. We investigate the new property of group fairness on multiple
sensitive attributes. We experimentally evaluate the group fairness on three datasets based on the
definition of group fairness, and compare with the general variational autoencoder.

3 Related work

Machine learning algorithms have been widely applied in almost every circle of our life in healthcare,
financial aid, insurance, online shopping, advertising etc. One of the problem in machine learning is
the machine, like humans, are vulnerable to show bias or unfairness hidden from the results. The
decision of a machine learning algorithm tends to be skewed or discriminated towards a certain
individual or groups of people [13, 6, 19]. There are commonly two types of sources of bias in the
machine learning area. The first one is the bias caused by the biased data [20]. The data especially
big data are often generated by groups which tend to have their own characteristics or behaviors. The
machine learning algorithms learned on these data might lead to unfair and biased prediction [7]. The
second type is the algorithm bias itself. Some of of AI and machine learning algorithm that have been
shown in lots of research that shows bias towards individual or certain groups in face recognition
applications, and search engines [12].

For the fairness of machine learning algorithms [3], there are further three categories involved. (1)
Pre-processing: some research focuses on try to process the data to remove the hidden discrimination
[10, 11]. (2) In-processing: some research investigates to modify the machine learning algorithm
to remove the discrimination during the training process [4, 15]. (3) Post-processing: this type
of research treats the trained model a back box without modifying the training data or learning
algorithms, and try to investigate the fairness property and further reassign the labels to improve the
fairness [5].

Our project is related to the post-processing research which focuses on a state-of-the-art algorithm–
coupled variational autoencoder, investigating the unexplored bias and fairness property. Out of
the machine learning domain, autoencoder fairness has been explored in the following researches.
Louizos et.al [16] proposes a fair variational encoder by removing the dependence of sensitive and
latent factors of variation by corporating an additional penalty term-"Maximum Mean Discrepancy".
The authors in [1] fused the original learning task with a variational autoencoder to learn the latent
structure within the dataset and then adaptively uses the learned latent distributions to re-weight the
importance of certain data points while training. Creager et.al [9] proposed an algorithm for learning
compact representation and claim the flexibly fair representation with respect to multiple sensitive
attributes. Our work is most close to this one and we investigate the recently proposed robust coupled
variational autoencoder and explore the fairness of representation learning with multiple sensitive
attributes.

4 Methodology

In this project, we investigate the novel property–bias and fairness of a recently proposed machine
learning algorithm-coupled variational autoencoder. We study the group fairness demographic parity
with respect to multiple sensitive attributes.
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4.1 Learning Representation with Coupled Variation Autoencoder

In this section, we simply introduce the recently proposed coupled variational autoencoder and the
learning representation for the classification tasks used for evaluating the fairness.

Figure 1: Varitional autoencoder model

The coupled VAE model incorporates the positive coupling for the cross-entropy and divergence costs
of the variational autoencoder which improves the learning of a robust inference model. It is based
on the variational encoder [14]. The basic structure of variational encoder is shown in Figure 1. The
whole process in (B) in this figure consists of an encoder, a decoder and a loss function. The input
data x in the original space is input into an encoder, which is usually a neural network that converts
x into a low dimensional latent space z, then the latent space is sampled usually with a Gaussian
distribution [z], and input again into the decoder. The decoder is usually a neural-network model
which decode the z into the reconstructed space x′.

The objective loss function is to minimize the loss in the encoding and decoding process. It is
measured by the log likelihood logPφ(x|z), which is input data given the model and decoder
parameters. It is defined as follows.

L(xi) = −DKL(q(z|x(i))||p(z)) + Eq(z|x(i))[logp(x
(i)|z)] (2)

The loss is established with the negative Kullback-Leibler divergence loss between the variational ap-
proximation q and the intractable posterior p plus the expected reconstruction error. After simplifying
with the the prior and posterior distribution of z with a Gaussian distribution, we get:

L(xi) = −DKL(q(z|x(i))||p(z)) +
1

L

L∑
l=1

(logp(x(i)|z(i,l))) (3)

In the proposed coupled variational autoencoder, the loss function is modified by coupled general-
izations of the KL-divergence and cross-entropy to improve the robustness of the VAE model. The
coupled entropy derives from the Tsallis entropy which utilizes a modified transformation. The
nonlinear statistical coupling (or simply the coupling) has been shown to quantify the relative variance
of a superstatistics model in which the variance of exponential distribution fluctuates according to a
gamma distribution, and is equal to the inverse of the degree of freedom of the Student’s t distribution.
The coupling is related to the risk bias by the expression r = −2k

1+k . It uses a generalized mean

(
∑
p
1− 2k

1+k

i )−
1+k
2k to model the long range correlations between the states. The mathematical form of
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coupled entropy function [18] with power α = 2 and coupling k is defined as

Sk(p) =
1

2
logk((

∑
p
1+ 2k

1+k

i )
−1
k ) =

1

k
((
∑

p
1+3k
1+k

i )−1 − 1) (4)

where lnk(x) = 1
k (xk − 1) is the generalization of the logarithm function, known as the coupled

logarithm function. Therefore, the modified loss function contains two terms: negative coupled
divergence and coupled cross-entropy. Coupled divergence is the generalization of KL divergence in
equation

Dkp(z)||q(z) ≡
D1∏
i=1

=

∫ ∞
−∞

p(zi)
1+ 2k

1+k

p(zi)
1+ 2k

1+k dzi

1

2
(logk(q(zi)− logk(p(zi)

− 2
1+k ))dzi (5)

Where D1 is the dimensionality of z. Coupled cross-entropy is the generalization of crossentropy
term, which is defined as

Hk(x) =

D2∑
i=1

xi
1

2
logk(yi)

2
1+k − (1− xi)

1

2
logk((1− yi)

2
1+k ) (6)

Where D2 is the dimensionality of z. Then the new loss function is the coupled loss function as

L(xi) = −Dk(p(z)||q(z)) +
1

L

L∑
l=1

H l
k (7)

4.2 Fairness Evaluation of Learned Representation with Coupled Variational Autoencoder

The group fairness is already defined in the Section 1. We explore the demographic parity distance
Ddp for classification tasks with the learned representation data of coupled variational autoencoder.

(1) We investigate the group fairness of the learned representation of coupled variational autoencoder
with multiple sensitive attributes. Specifically, we examine (a) whether the representation learned
from the model allows users to easily adapt the representation to a variety of fair classification settings,
where a task may have a different task label y and sensitive attributes. (b) whether the representation
learning from the model can be fair with respect to pairs of multiple sensitive attributes (e.g. if a
classifier is fair to women but not fair for men).

(2)We randomly split a dataset into audit dataset and test dataset. The audit dataset will be randomly
split into training set and validation set and make them balanced. We train the coupled variational
autoencoder on the training dataset and find the best learning representation model on the rest
validation dataset with grid search of 6 different latent dimensions.

(3) We evaluate the models with the test dataset. For the audit dataset, we remove and does not
remove the sensitive dimensions of attributes to train the model, respectively. We show the prediction
performance of a multilayer perceptron (MLP) classifier trained on the encoded audit dataset for
fairness evaluation, and test the demographic parity distance Ddp with different sensitive attributes
on test dataset.

(4) We compare the group fairness of coupled variational autoencoder model with the general
variational autoencoder model and show the results in the next Section 5.

5 Experimental Evaluation

We show the datasets used for autoencoder learning, the group fairness evaluation of the coupled
variational autoencoder (CVAE), the prediction performance, and compare the fairness with the
general variational autoencoder (VAE).

5.1 Data Sets

We use three public datasets effectively for the fairness evaluation with multiple sensitive attributes.
The dataset statistics inforamtion are shown in Table 1.
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Table 1: Dataset statistics information
Dataset Instance number Total attributes Sensitive attributes
Default of Credit Card 30,000 24 2
German Credit Risk 1,000 10 2
UTK Faces 10,000 3 + image pixels (200x200) 2

Default of Credit Card Dataset: The default of credit card dataset [21] contains information on
default payments, demographic factors, credit data, history of payment, and bill statements of credit
card clients in Taiwan from April 2005 to September 2005. The attributes include the given credit
limit, gender, education marital status, age, statements and default payment next month. We predict
an individual has default payment next month or not and consider sensitive attributes gender and
education level here.

German Credit Risk Dataset: This German credit dataset [2] contains 1000 credit records of
indindividuals. The attributes includes personal status, sex, credit score, credit amount, housing
status, etc. We use the learned representation to classify the individual record of credit good or bad.
The sensitive features we consider are the gender or job skill level.

UTK Faces Dataset: This is a larger dataset of faces [22]. The diversity in face dataset is designed
especially for fairness research in faces. It contains 21k annoted images. There are age, gender, race
and other attributes of each face image. For fairness evaluation, we consider the sensitive attribute of
race or gender given the other attributes for the classification. Due to the computing resources and
time limit, here we use 10k images instances for the training and test in our experiments.

Some of the sensitive attributes distribution are shown in Figure 2. It shows the different distributions
of attributes in each of three datasets, including gender, education level, job skill level, and race. The
data instances are not imbalanced according to different sensitive types.

5.2 Evaluation Procedure

• We randomly divide the dataset into audit dataset for learning the autoencoder, and test
dataset (for evaluating the autoencoder).

• We optimize the autoencoder model with grid search to find the best encoder to learn the
representation on the audit dataset which randomly split into the training-validation dataset.

• We evaluate the group fairness of the learned autoencoder. We freeze the encoder weights
and train a classifier to predict some task labels given the output on the test dataset. We use
a multilayer perceptron (MLP) classifier to train the classifier with cross validation of audit
dataset. Then the group fairness Ddp against different sensitive attribute pairs are evaluated
on the test dataset.

We randomly split of datasets into audit dataset and test dataset to do the experiments 10 times and
show the average results in the later sections.

5.3 Validation Loss for Learning Coupled Variational Autoencoder

Autoencoder learns the representation z of latent dimension from the input data x. According to
different input data sizes, we learn different dimensions of z with grid search on the validation dataset.
We then select the best latent dimension z of encoder for representation learning on each dataset. If
the input data size is D, then the latent dimension range is tried at [D30 , D20 , D10 , D5 , D4 , D2 ].

We show the validation loss result of learning representation with CVAE in Figure 3 (a), (b) and (c)
for the three datasets.

5.4 Classification Performance

In our training of MLP classification, we sampled balanced data instances of different classes to train
the classification of each goal in the three datasets.

The classification performance of precision, recall and F1-score in three datasets with different
prediction goals are shown in Table 2. In the UTKFace, the prediction goal is to predict gender or
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Male
60.4%

Female
39.6%

(a) Gender distribution on Default
of Credit Card

Graduate school

35.3%

University

46.8%

High school

16.4%

Others

1.5%

(b) Education distribution on Default
of credit card

Male

69.0%

Female

31.0%

(c) Gender distribution on German
Credit Risk

Unskilled and non-resident,

2.2%

Unskilled and resident

20.0%

Skilled

63.0%

Highly skilled

14.8%

(d) Job distribution on German
credit risk

Male 52.4%
Female47.6%

(e) Gender distribution on UTKFace

white
42.4%

black

19.3%

asian

14.4%

indian

16.8%

others

7.1%

(f) Race distribution in UTKFace

Figure 2: Examples of attribute distributions on the three datasets
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(a) CVAE Validation loss on Default of Credit Card (b) CVAE Validation loss on German Credit Risk

(c) CVAE Validation loss on UTK Faces (d) Parity differences of the sensitive attributes on
Default of Credit Card

(e) Parity differences of the sensitive attributes on German
Credit Risk

(f) Parity differences of the sensitive attributes on UTK Faces

Figure 3: (a)–(c) Validation loss of the CVAE learning representation, (d)–(f) The demographic parity
distances of different sensitive attributes on the three datasets
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race based on other attributes, so there are two types of classification involved. We can see that, the
prediction F1-score is around 0.68–0.84. Probably we use MLP classification, which is not a simple
model, so the F1-score is not high. However, it does not affect the fairness evaluation of the sensitive
attributes.

Table 2: Classification performance
Datasets prediction Precision Recall F1
Predict Default of Credit Card 0.5213 1.0000 0.6853
Predict German Credit Risk 0.7639 0.9333 0.8401
Predict UTKFace gender 0.7103 0.8800 0.7861
Predict UTKFace race 0.5533 0.8667 0.6754

5.5 Group Fairness Evaluation of Autoencoder

As we said, we use MLP classification result and calculate the demographic parity differences to
evaluate the group fairness of Coupled Variational Autoencoder (CVAE).

We also run the same procedure to get the best learning representation model for the baseline-VAE,
and compare the fairness with CVAE.

Here we consider different pairs of sensitive attributes for each different datasets. The group of the
attributes considered are among genders, education level, job skill level, and race in these datasets.

Evaluation on the Default of Credit Card In this dataset, we predict a person has default of next
month payment or not. We evaluate the demographic parity given the male and female, and the
different education level. Figure 3 (d) shows the demographic parity distance ∆dp on the Default of
Credit Card dataset. It shows the CVAE model has good result for fairness on the sensitive attributive
with the demographic parity difference values around 0.01–0.08. Compared with VAE model, it has
good fairness on gender and most of the sensitive attributes of education levels.

Evaluation on the German Credit Risk In this dataset, we predict a person to have credit risk or
not according to the person information and the credit record. We evaluate the demographic parity
given the male and female, and the different job skill level. Figure 3 (e) shows the demographic
parity distance ∆dp on the German Credit Risk dataset. It shows the fairness with demographic parity
difference values is around 0.05-0.3, which is much larger than that on the Default of Credit Card
dataset. Similarly to the Default of Credit Card dataset, the CVAE performs a little bit better than
VAE for these attritubes on the demographic parity distance metric for most of the attribute pairs.

Evaluation on UTKFace In this dataset, there are two types of classifications are applied. First is
to predict a person is female or male given the face information and other attributes in the dataset.
The second is to predict a person’s different races. We evaluate the demographic parity difference
given the male and female, and the different education level. Figure 3 (f) shows the demographic
parity distance Ddp on the UTKFace dataset. It shows the fairness evaluation with Ddp values around
0.13-0.36. However, the CVAE model performs worse than the VAE model on most of the sensitive
attributes pairs based on the demographic parity distance measurement. This is probably the robust
loss function of learning representation for capture the high accuracy which drives the bias to the
race classification.

6 Conclusion

In this project, we explore the group fairness of the recently proposed coupled variational autoencoder
and compare it with the general variational autoencoder. It shows the coupled variational autoencoder
has good fairness on the gender, education level, but not as good as the general variational autoencoder
in other attributes especially gender and race attributes in the evaluated UTKFace dataset according to
the demographic parity difference metric. It indicates the proposed coupled variational autoencoder
has been claimed robust and accuracy, but the fairness is not still a problem and needs to be considered
and improved. In the future, we could optimize the autoencoder loss function against sensitive
attribute types to reduce the bias. We could explore other types of definition of fairness, such as equal
opportunity, fair subgroup accuracy and further investigate the fairness of this autoencoder model.
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