
System fault detection for multivariate time series

Fubao Wu

Research Intern, Bently Systems, WaterTown, CT

1. Overview

Nowdays, there are a large number of infrastructures and facilities con-
structed such as buildings, bridges, railways and factory facilities, etc. Many
of them are becoming aging with time evolved. To monitor the health of
them, a large amount of sensors are deployed around them. Each sensor is
a time series data. These leads to the generation of larger multivariate time
series data. To analyze these time series data, detecting the system fault
and giving proper and timely alerting is a popular and important task. We
propose a system fault detection technique with reduced top-k important
features for high dimensional multivariate time series based on our previous
univariate time series outlier detection methods and on windows techniques.

2. Preliminary

A time series is defined as an ordered sequence of real-valued measurement
taken at timestamps X = x1, x2, , , xT with a times step interval st. st could
be several seconds, minutes, hours or days. A multivariate time series D =
{Xi}pi=1 is a collection of time series that correspond to the measurements of
p real-valued variables spanning the same time interval. Each measurement
of is also called one dimension/ feature. There are p dimensions/features for
the multivariate time series data. -

Outlier: For a univariate time series, if the data object at a timestamp
deviates significantly from the expected value or from the rest of the objects,
as if it were generated by a different mechanism, we call the data object has
a outlier at that timestamp.

System fault: If there is a high probability that most of the measure-
ments have outliers detected, the system is more likely to break down, we
call it the system fault.

Preprint submitted to Journal Name September 3, 2018

Problem statement Given a multivariate time series dataset D with
the number of existing fault/breaking down event dates Gd, the problem is
trying to detect the probability of the system fault on each time step t with
new datasets.

3. Dataset

In our problem, The multivariate time series data are from sensors de-
ployed for a facility of a diamond-mining related company-De Beers, which
are deployed around the Southern African ocean. They measure the status
of the diamond mining facility. The data are composed of p = 41 features,
which correspond to 41 measurements of sensors. Each time series span two
and half month periods from 02/01/2018 to 04/25/2018. The time step are
5 minutes. Therefore, there are T = 24000 records. Each feature corre-
sponds to a real-valued measurement, such as temperature, pressure, voltage
or current and so on. There are 4 known system break-down event dates-
01/31/2018, 03/10/2018, 03/19/2018, 03/21/2018 when the system has bro-
ken down, which are considered as the ground truth of fault dates.

4. Methodology

For univariate time series, the outlier detection method is relatively ma-
ture and reliable. In our problem, we have very high dimensional data. One
intuitive way is to get a model that can learn the potentially important fea-
tures from the high dimensions. Considering there are only 4 ground truths
for this long periods of time series, if we consider the traditional supervised
learning classification method, the unbalanced classes of ground truths would
lead us great bias and unexpected test accuracy for a learned model. There-
fore we propose to use a semi-supervised learning approach to reduce the
high-dimensional features and use the top-k features to do system fault pre-
diction based on univariate outlier detection methods.

The approach is organized as the following steps, which are also shown
in Figure 1

1. Divide the multivariate time series data into each univariate time se-
ries and use an existing outlier detection approach for each univariate
time series detection, which includes preprocessing, decomposition and
outlier detection.

2

2. Based on each univariate time series outlier detection result and the
ground truth system fault date, we use a partitioning (fixed window)
technique to calculate the feature outlier score for each feature based
on different fixed window (mw) size, a ranking of top features can be
obtained.

3. Based on a top-k features, we propose to use moving windows to calcu-
late the probability of system fault for each specified timestamp, e.g. 5
minutes. In this way, each specified timestamp would have a probabil-
ity of system fault detection with different top-k feature and different
moving window size mw. The optimized fw, top-k and mw values are
picked based on the best performances that has the best system fault
detection score that we designed to evaluate the fault model.

4. Use the the best fixed window fw, top-k feature and moving window
mw as the suggested default values to do new data prediction, or users
can set top-k and mw values to do system fault detection with new
dataset. Each specified timestamp would have a system fault prob-
ability, a threshold could be set to decide the probable system fault
warning.

4.1. Outlier Detection for Univariate Time Series

For each univariate time series, there are four existing outlier detection
methods: Xbar, EWMA, Cusum and SH-ESD. The methods are effective
in detecting outlier for univariate time series. It can detect the low outlier
and high outlier. There are basically three steps for each outlier detection
method. (1) Data preprocess (2) Decomposition (3) Outlier detection. The
detailed description could be referred in the technical report [1] For the outlier
detection steps, there are some differences we have done here, compared with
the operations in the report [1].

4.1.1. Preprocessing
1. To decrease the influence of the noise, we consider a moving window for

preprocessing. For example, we set the windows size ws = 12, for each
continuously 12 time step ts, we get the accumulated average as the
new values for each time series. Note the time step is still not changed,
but the value in each time step is average of accumulated hourly values
of original data.

2. Remove the negative values. For all the dataset, the negative values
are removed.

3

Preprocessing

Divide Preprocessing

Preprocessing

Decomposition

Decomposition

Decomposition

… …

Multivariate
time series
data

Outlier
detection

Outlier
detection

Outlier
detection

Feature
evaluation

System fault
detection

…

Near Realtime
fault detection

Output fault
probability

Top-k
features

Model
parameters

Outlier OutlierOutlier

Figure 1: System fault detection overflow

3. Fill the missing time steps, irregular time step and remove duplicated
time steps same as in the report [1].

4.1.2. Decomposition

Considering our data do not have obvious periodicals, we use the following
decomposing method for each univariate time series value

New remainder = Original value− Trend (1)

4.1.3. Outlier Detection

For each time series, we use the new remainder to do the outlier detection
with the four outlier detection methods.

4.1.4. Feature Evaluation

With previous steps, for each time series, we can get the result of outlier
detections with low or high outliers for each timestamp. To avoid the curse
of dimensionality, how to use the important features or use feature reduction
to effective and efficient detection of system fault is critical. We propose the

4

following way to do feature selection. We calculate the feature outlier score
for each feature and then get the ranking of the features based on the score.

Feature outlier score Based on the ground truth date and all the
univariate-time series outlier detection results, we propose a partitioning way
(that is to use fixed windows) to calculate the feature outlier score for each
feature. Let’s consider one outlier detection method here as an example, such
as Xbar. a feature i’s detection score is then calculated in this following way
with Xbar. For other features and other outlier detection methods, it would
have the similar processes.

Figure ?? shows an example of feature i time series.

t
partition-fixed window size w

B1

Feature 1:

Feature 2:

Feature 3:

...

...

...

 B2

System break down
dates

Start

0 8 3 1 0 0

0

0

0 1

01

2

4 0

1

0

0

2

3

3

4

2 5

t
Fixed window

B1

Feature i: ...

 B2

System ground
 truth dates

Start

0 01 4 0 2 2 0

Figure 2: Example of feature outlier score calculation

1. We divide the timestamps of this whole data into several value intervals
based on ground truth fault dates. In Figure 2, the red line indicates
the start date or a ground truth fault date. The number of interval N
equals to the number of ground truth fault dates.

2. Each ground truth fault date and previous ground truth fault date (or
the starting date) in each time series comprise of the value interval
Xst starting indexing from s and ending at t. For each value interval
Xst, we split the timestamps in this interval based on a fixed windows

5

parameter fw. fw could set 1, 2, 3, ..., 7 days. Therefore, we get a num-
ber of partitions based on a fixed fw for each interval i. The partition
date closest to ground truth date is called the ground truth partition
date, other partition dates are called normal dates. In Figure 2, there
are interval j and j + 1, the Partition 1 between red and blue line is
the ground truth partition date, the partition 2, 3,... in interval j are
normal dates.

3. Based on a fw value, we calculate the detected value of outlier in each
partition for each feature in each interval. If in the interval, there
is at least one high or low outlier detected, the value would be “1”,
otherwise, it is “0”. These binary value are shown in Figure 2 in each
partition.

4. We calculate the F1 (or precision) score FSi of each feature i as the
feature’s outlier score as follows:

FSi =
1

N

N∑
j=1

fj (2)

Where fj is the F1 score of each interval j. We calculate the precision
pj and recall rj to get each interval’s F1 score fj, For each interval j, the
precision pj is calculated in this way below based on the true positive
and false positive. The recall rj is calculated based on the true positive
and false negative.
True positive (tpj): number of “1” values in ground truth partition
date in an interval j. This is the value in partition 1 in Figure 2
False positive (fpj): number of “1” values in normal dates in an interval
j. This is the number of “1” values in partition 2, 3 and 4 in Figure 2.
False negative (fnj): number of “0” values in ground truth partition
date in an interval j. This is the number of “0” values in partition 1 in
Figure 2
Then each interval j’s precision is:

pj =
tpj

tpj + fpj
(3)

Each interval j’s recall is:

rj =
tpj

tpj + fnj

(4)

6

Each interval j’s F1 score is:

fj = 2 · pj · rj
pj + rj

. (5)

In the interval 1 for ground truth B1 of Figure 2, p1 = 1
1+4

= 0.2. r1 =
1

1+0
= 1. So f1 = 2 · 1·0.2

1+0.2
= 0.3333.

After getting each feature i’s outlier score FSi, we can rank the features
by their outlier scores in non-ascending order.

4.1.5. System Fault Model Construction

In this section, we describe how to use our previous proposed technique
to do the system fault detection for multivariate time series to construct
system fault detection model. After we preset the top-k values, we then use
the top-k features to do the system fault detection for this model. To monitor
the system status timely and detect the system fault effectively, we propose
a probability-based method to detect how likely the system will have faults
based on moving windows. Given multivariate time series data, we calculate
each specified timestamp t’s probability of system fault Pt using a moving
windows size mw. The procedure is described as follows:

1. Set a time unit of observation, such as “each time-step” or “each day”.

2. Set a moving window size mw based the set time unit.

3. System fault probability: Calculate the system fault probability Pt

at timestamp t based on themw and top-k features. pt is the percentage
of number of features detecting outliers in each window time over the
value of k.

pt = ntkk (6)

where nk is the number of features detecting outlier in the window
staring at timestamp t

4.2. System Fault Model Evaluation

To evaluate the ”goodness” of the model, we propose system fault detec-
tion score (FDS) to evaluate each model’s performance. We can try different
combinations of parameters of fixed windows size, top-k and moving window
size to get different models. For each model, we get a FDS. The FDS is con-
structed according to the fault probability result and ground truth events.
Intuitively, if a probability is closer to a ground truth event, it can have

7

Time series
outlier points

 w1

 w2

 w3

...

...
P1

t

P2

P3

E.g. Moving window
size w = 4* timesteps

t1 t2 t3 t4 t5

...

System fault
probability

 w1

 w2

 w3

...

...
P1

t

P2

P3 Moving window size w

t1 t2 t3 t4 t5

...

System fault
probability

Feature 1:
Feature 2:
Feature 3:

1 0 1 7 8 8
4
2

3
21

51
12

13

0

Outlier number

Figure 3: Example of system fault probability

t

TP period

B1

...

 B2

System ground
 truth dates

0

FP period

System fault
probability

T1
T20L L

Figure 4: Example of model evaluation with system fault detection score

8

higher weight. As shown in the Figure ?? We define a ground truth period
as a period between a starting date time and a ground truth date time, or
between two ground truth date times. Therefore, we divide a ground truth
period Bi that has Ti days as a true positive period, and a false positive
period L days, which is called a penalty-day parameter. We define a true
positive score for a true positive period as TPS(Bi)

TPS(Bi) =

Ti∑
t=L

Pt ∗ (1−
Ti − t

Ti

) (7)

Where 1 − Ti−t
Ti

is the weight for the fault probability Pt in true positive
period. If the t index is closer to the final index Ti, the Pt will have higher
weight.

Also, the false positive score as penalty score for a false positive period
Bi is defined as FPS(Bi)

FPS(Bi) =

Ti∑
t=L

Pt ∗ (
Ti − t

Ti

) (8)

Ti−t
Ti

is the weight for the fault probability in false positive period
Therefore, the total system fault detection score DS for a dataset D

containing N ground truth dates is the total summation of the differences
between true positive score and false positive score

DS(D) =
N∑
i=1

TPS(Bi)− FPS(Bi) (9)

Generally, if a fault detection score is higher, the constructed model will
have better performance. Therefore, we select different configurations of
parameters to find the best model.

4.2.1. Select Different Parameter Configurations

The parameters for a model configuration include fixed window size fw
in feature evaluation stage, the number of top feature k and moving window
size mw.

We could also set the parameters manually, or we could use an automatic
way to get the optimized parameter configurations. To find the best con-
figuration of parameters,fw, k and mw for each different outlier detection
method.

fw, k,mw = argmax
fw,k,mw

Swk (10)

9

4.3. Near Realtime System Fault Detection

When a new dataset comes, we could calculate each specified time step’s
probability pt of system fault with the best model configuration found in the
previous step. Then we could set a threshold plow to decide the appropriate
warning of system fault when the pt is above the threshold plow.

5. Experimental Evaluation

We developed an integrated tool with user interface in C# language. We
experimentally verify the approach and test the tool in a Windows platform.
Here we show the experimental evaluation results with feature evaluation
and system fault detection.

5.1. Dataset Usage

We divide the multivariate time series data from De Beers company into
two parts. The first part is used for model construction to find best model,
called model construction data D1, the second part is used for validating
the best model, called model validation data D2. D1 has 41 features that
spans from 02/01/2018 to 03/21/2018, which has 3 ground truth events on
03/10/2018, 03/19/2018, 03/21/2018. Each feature corresponds to a uni-
variate time series that has 5 minute time step. D2 has 41 features that
spans from 03/22/2018 to 04/25/2018, which has 1 ground truth event on
04/10/2018. Each feature also corresponds to a univariate time series that
has 5 minute time step.

5.2. Top Feature Evaluation

Top-k features play an important role in deciding the performance of a
system fault. To evaluate the effectiveness of top features, we try different
numbers of feature to observe the models’ performance. Here we show a
model’s fault detection score to different number of top feature from 1 to 10
for penalty-day L = 7 and L = 14 with Xbar and Cusum method, respec-
tively. Figure 5a shows different models’ performance results for L = 7. It
shows with the increasing of number of top features, the model fault detec-
tion score for both Xbar and Cusum methods increases and then decrease.
For Xbar method, the maximum score is reached when the number of top
features is 3. For Cusum method, top-6 features correspond to the maxi-
mum fault detection score. However, the fault detection score values are all
negative, which is not good indication for a model performance.

10

Figure 5b shows different models’ performance results for L = 14. It
shows the similar result as L = 7 for Xbar and Cusum method too. The
peak score value is at the top-3 features for Xbar method. The maximum
score value for Cusum method is reached at top-5 features.

(a) L = 7 days (b) L = 14 days

Figure 5: System fault detection score vs Number of top features

5.3. Examples of Model Construction and Validation

Here we show the model construction and validation result for Xbar and
Cusum method based on the best model performance. Figure 6a shows the
model construction for Xbar result based on the best top-3 features on data
D1. The top-3 features are. From the figure, the three ground truth events
are indicated in the red dotted line. The probabilities of time steps around
the ground truth events have basically higher probabilities than other time
steps even though there exist a few time steps with high probabilities that
are possible to be false positive.

Figure 6b shows the model validation for Xbar result on D2 with the
model constructed in Figure 6a. It shows the validation has very good result
around the ground truth event date, which demonstrate the effectiveness of
our system fault detection model.

Figure 7a shows the model construction for Cusum result based on the
best top-5 features on data D1. The top-5 features are. Similarly, we can
see that the probabilities of time steps around the ground truth events have
basically higher probabilities than other time steps even though there exist
a few time steps with high probabilities that are possible to be false positive.

Figure 7b shows the model validation for Xbar result on D2 with the
model constructed in Figure 7a. It shows the validation has very good result

11

(a) Model construction result for Xbar (b) Model validation result for Xbar

Figure 6: Model construction fault probability and validation fault probability result for
Xbar method

around the ground truth event date, which demonstrate the effectiveness of
our system fault detection model.

(a) Model construction result for Cusum (b) Model validation result for Cusum

Figure 7: Model construction fault probability and validation fault probability result for
Cusum method

5.4. Fixed Window Evaluation

Figure 8a shows the fault detection model performance to different fixed
windows fw (24, 48 to 144 hours) with top-2, top-5 and top-8 for Xbar
method. It shows similar trends for these top features that detection score
begin to increase and then decrease. The larger fw does not help much to
the performance of the model. Figure 8b shows the fault detection score
to different fixed windows for Cusum method. It also shows when the fw
increases to a large number, the fault detection score does not increase. The
maximum detection score are basically achieved at fw at 72 or 96 hours.

5.5. Moving Window Evaluation

Figure 9a shows the fault detection model performance to different moving
windows fw (24, 48 to 144 hours) with top-2, top-5 and top-8 for Xbar. It

12

(a) Fixed window evaluation for Xbar (b) Fixed window evaluation for Cusum

Figure 8: Model fault detection score to different fixed window evaluation for Xbar and
Cusum methods

shows similar trends for these top features that detection score begin to
increase and then decrease. The larger fw also does not help much to the
performance of the model. Figure 9b shows the fault detection score to
different moving windows for Cusum method. It also shows when the fw
increases to a large number, the fault detection score does not increase. The
maximum detection score are basically achieved at fw at 72 or 96 hours.

(a) Fixed window evaluation for Xbar (b) Fixed window evaluation for Cusum

Figure 9: Model fault detection score to different moving window evaluation for Xbar and
Cusum methods

5.6. Conclusion

We have proposed and developed a system fault detection approach for
multivariate time series data and developed the integrated tool to experimen-
tally verified the approach and the tool. From the experimental results, we
can see that the different outlier methods show different top feature results.
The best model performance

13

References

[1] Technique report on event detection for smart water management (2018).

14

